Center for Latin American and Caribbean Studies Faculty Database
Center for Latin American and Caribbean Studies
Office of the Provost
Duke University

 HOME > Provost > clacs > Faculty    Search Help Login pdf version printable version 

Publications [#278723] of Paul A. Baker

Papers Accepted

  1. Fritz, SC; Baker, PA; Ekdahl, E; Seltzer, GO; Stevens, LR, Millennial-scale climate variability during the Last Glacial period in the tropical Andes, Quaternary Science Reviews, vol. 29 no. 7-8 (April, 2010), pp. 1017-1024, Elsevier BV, ISSN 0277-3791 [doi]
    (last updated on 2019/09/22)

    Millennial-scale climate variation during the Last Glacial period is evident in many locations worldwide, but it is unclear if such variation occurred in the interior of tropical South America, and, if so, how the low-latitude variation was related to its high-latitude counterpart. A high-resolution record, derived from the deep drilling of sediments on the floor of Lake Titicaca in the southern tropical Andes, is presented that shows clear evidence of millennial-scale climate variation between ∼60 and 20 ka BP. This variation is manifested by alternations of two interbedded sedimentary units. The two units have distinctive sedimentary, geochemical, and paleobiotic properties that are controlled by the relative abundance of terrigenous or nearshore components versus pelagic components. The sediments of more terrigenous or nearshore nature likely were deposited during regionally wetter climates when river transport of water and sediment was higher, whereas the sediments of more pelagic character were deposited during somewhat drier climates regionally. The majority of the wet periods inferred from the Lake Titicaca sediment record are correlated with the cold events in the Greenland ice cores and North Atlantic sediment cores, indicating that increased intensity of the South American summer monsoon was part of near-global scale climate excursions. © 2010 Elsevier Ltd. All rights reserved.

Duke University * Faculty * Staff * Reload * Login