Energy Initiative Faculty Database
Energy Initiative
Office of the Provost
Duke University

 HOME > Provost > Energy Initiative > Faculty    Search Help Login pdf version printable version 

Publications [#198914] of Brian P. Mann

Papers Published

  1. Stanton, Samuel C. and Erturk, Alper and Mann, Brian P. and Inman, Daniel J., Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification, JOURNAL OF APPLIED PHYSICS, vol. 108 no. 7 (October, 2010), ISSN 0021-8979 [doi]
    (last updated on 2011/12/09)

    Abstract:
    We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25\% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c(1111)(p)=-3.6673 x 10(17) N/m(2) and a fourth order electroelastic tensor value of e(3111)=1.7212 x 10(8) m/V. (C) 2010 American Institute of Physics. {[}doi:10.1063/1.3486519]


Duke University * Faculty * Staff * Reload * Login