Publications [#329885] of David R. Sherwood

search .

Papers Published

  1. Naegeli, KM; Hastie, E; Garde, A; Wang, Z; Keeley, DP; Gordon, KL; Pani, AM; Kelley, LC; Morrissey, MA; Chi, Q; Goldstein, B; Sherwood, DR, Cell Invasion In Vivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain., Developmental cell, vol. 43 no. 4 (November, 2017), pp. 403-417.e10 [doi] .
    (last updated on 2024/04/17)

    Abstract:
    Invasive cells use small invadopodia to breach basement membrane (BM), a dense matrix that encases tissues. Following the breach, a large protrusion forms to clear a path for tissue entry by poorly understood mechanisms. Using RNAi screening for defects in Caenorhabditis elegans anchor cell (AC) invasion, we found that UNC-6(netrin)/UNC-40(DCC) signaling at the BM breach site directs exocytosis of lysosomes using the exocyst and SNARE SNAP-29 to form a large protrusion that invades vulval tissue. Live-cell imaging revealed that the protrusion is enriched in the matrix metalloprotease ZMP-1 and transiently expands AC volume by more than 20%, displacing surrounding BM and vulval epithelium. Photobleaching and genetic perturbations showed that the BM receptor dystroglycan forms a membrane diffusion barrier at the neck of the protrusion, which enables protrusion growth. Together these studies define a netrin-dependent pathway that builds an invasive protrusion, an isolated lysosome-derived membrane structure specialized to breach tissue barriers.