Computational Media, Arts & Cultures Faculty Database
Computational Media, Arts & Cultures
Arts & Sciences
Duke University

 HOME > Arts & Sciences > CMAC > Faculty    Search Help Login pdf version printable version 

Publications [#262640] of Tuan Vo-Dinh

Papers Published

  1. Vo-Dinh, T; Dhawan, A; Norton, SJ; Khoury, CG; Wang, H-N; Misra, V; Gerhold, MD, Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing., The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 114 no. 16 (April, 2010), pp. 7480-7488, ISSN 1932-7447 [repository], [doi]
    (last updated on 2024/04/23)

    Abstract:
    This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing.


Duke University * Arts & Sciences * Faculty * Staff * Grad * Reload * Login