Publications [#233838] of Barbara R. Shaw

Journal Articles

  1. Li, H; Porter, K; Huang, F; Shaw, BR, "Boron-containing oligodeoxyribonucleotide 14mer duplexes: enzymatic synthesis and melting studies.", Nucleic acids researchNovember,, 1995, 23(21), 4495-4501 [7501475], [doi].
    (last updated on 2024/04/19)

    Abstract:
    A set of three 14mer oligodeoxyribonucleotides of sequence d(5'-CTATGGCCTCAG*CT-3'/3'-GATACCGGAGTCGA-5') containing G* variants either as 2'-deoxyguanosine phosphate (unmodified), N7-cyanoborane 2'-deoxyguanosine phosphate (base-modified) or 2'-deoxyguanosine boranophosphate (backbone-modified) were synthesized by template-directed primer extension. Both the N7-cyanoborane 2'-deoxyguanosine triphosphate and 2'-deoxyguanosine alpha-boranotriphosphate nucleotides are good substrates for Sequenase. We infer that a single Sp boranophosphate linkage (which has a stereochemistry equivalent to the corresponding Rp thiophosphate analog) is formed in the backbone-modified 14mer. Thermally induced helix-coil transitions were monitored for the hybridized duplexes using UV and circular dichroism (CD) spectroscopy. The CD spectra of the two types of boron-modified hybrids closely resemble the unmodified parent duplex, forming B-type helices in 150 mM NaCl, 1 mM EDTA, 10 mM phosphate, pH 7.4, buffer. UV melting results indicate that both hybrids have stabilities comparable with the parent duplex as measured by Tm or delta G degree 25. These studies indicate that singly modified base- or backbone-boronated DNA are good analogs of normal DNA.