Publications [#348471] of Stephen L Craig

Journal Articles

  1. Lin, Y; Kouznetsova, TB; Craig, SL, "Mechanically Gated Degradable Polymers.", Journal of the American Chemical SocietyFebruary,, 2020, 142(5), 2105-2109 [doi].
    (last updated on 2024/04/25)

    Abstract:
    Degradable polymers are desirable for the replacement of conventional organic polymers that persist in the environment, but they often suffer from the unintentional scission of the degradable functionalities on the polymer backbone, which diminishes polymer properties during storage and regular use. Herein, we report a strategy that combats unintended degradation in polymers by combining two common degradation stimuli-mechanical and acid triggers-in an "AND gate" fashion. A cyclobutane (CB) mechanophore is used as a mechanical gate to regulate an acid-sensitive ketal that has been widely employed in acid degradable polymers. This gated ketal is further incorporated into the polymer backbone. In the presence of an acid trigger alone, the pristine polymer retains its backbone integrity, and delivering high mechanical forces alone by ultrasonication degrades the polymer to an apparent limiting molecular weight of 28 kDa. The sequential treatment of ultrasonication followed by acid, however, leads to a further 11-fold decrease in molecular weight to 2.5 kDa. Experimental and computational evidence further indicate that the ungated ketal possesses mechanical strength that is commensurate with the conventional polymer backbones. Single molecule force spectroscopy (SMFS) reveals that the force necessary to activate the CB molecular gate on the time scale of 100 ms is approximately 2 nN.