## Publications [#339830] of Ezra Miller

Other Faculty Listings: Faculty Alphabetically | By Rank | By Area**Peer-reviewed journal articles published**

- Katthän, L; Michałek, M; Miller, E. "When is a Polynomial Ideal Binomial After an Ambient Automorphism?."
*Foundations of Computational Mathematics*19.6 (December, 2019): 1363-1385. [doi]

(last updated on 2020/12/04)**Abstract:**

© 2018, The Author(s). Can an ideal I in a polynomial ring k[x] over a field be moved by a change of coordinates into a position where it is generated by binomials xA- λxb with λ∈ k, or by unital binomials (i.e., with λ= 0 or 1)? Can a variety be moved into a position where it is toric? By fibering the G-translates of I over an algebraic group G acting on affine space, these problems are special cases of questions about a family I of ideals over an arbitrary base B. The main results in this general setting are algorithms to find the locus of points in B over which the fiber of Iis contained in the fiber of a second family I′ of ideals over B;defines a variety of dimension at least d;is generated by binomials; oris generated by unital binomials. A faster containment algorithm is also presented when the fibers of I are prime. The big-fiber algorithm is probabilistic but likely faster than known deterministic ones. Applications include the setting where a second group T acts on affine space, in addition to G, in which case algorithms compute the set of G-translates of Iwhose stabilizer subgroups in T have maximal dimension; orthat admit a faithful multigrading by Zr of maximal rank r. Even with no ambient group action given, the final application is an algorithm todecide whether a normal projective variety is abstractly toric. All of these loci in B and subsets of G are constructible.