Adam P. Wax, Faculty Network Member of Duke Institute for Brain Sciences and Professor of Physics and Member of Duke Cancer Institute and Bass Fellow of Biomedical Engineering  

Adam P. Wax

Office Location: 2571 CIEMAS, Durham, NC 27708
Office Phone: (919) 660-5143
Email Address:
Web Page:

Medical Imaging
Cancer diagnostics and therapy
Sensing and Sensor Systems

Ph.D., Duke University, 1999
M.A., Duke University, 1996
B.S., Rensselaer Polytechnic Institute, 1993
BS, State University of New York, 1993

Research Description: Dr. Wax's research interests include optical spectroscopy for early cancer detection, novel microscopy and interferometry techniques.

Teaching (Spring 2019):

  • Bme 547.01, Medical software design Synopsis
    Hudson 115a, WF 01:25 PM-02:40 PM

Representative Publications   (More Publications)

  1. Pyhtila J. W., K. J. Chalut, J. D. Boyer, J. Keener, T. A. D’Amico, M. A. Gottfried, F. Gress, and A. Wax, In situ detection of nuclear atypia in Barrett’s esophagus using angle-resolved low coherence interferometry, Gastrointestinal Endoscopy, vol. 65 (2007), pp. 487-491 .
  2. Chalut, KJ; Kresty, LA; Pyhtila, JW; Nines, R; Baird, M; Steele, VE; Wax, A, In situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry., Cancer Epidemiology, Biomarkers & Prevention : a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, vol. 16 no. 2 (February, 2007), pp. 223-227 [doi]  [abs].
  3. Pyhtila, JW; Boyer, JD; Chalut, KJ; Wax, A, Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy., Optics Letters, vol. 31 no. 6 (March, 2006), pp. 772-774 [OL.31.000772], [doi]  [abs].
  4. Curry, Adam and Hwang, William L. and Wax, Adam, Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture, Optics Express, vol. 14 no. 14 (2006), pp. 6535 - 6542 [OE.14.006535]  [abs].
  5. Wax, A; Pyhtila, JW; Graf, RN; Nines, R; Boone, CW; Dasari, RR; Feld, MS; Steele, VE; Stoner, GD, Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry., Journal of Biomedical Optics, vol. 10 no. 5 (September, 2005), pp. 051604 [1.2102767], [doi]  [abs].
  6. Graf, Robert N. and Wax, Adam, Nuclear morphology measurements using Fourier domain low coherence interferometry, Optics Express, vol. 13 no. 12 (2005), pp. 4693 - 4698  [abs].
  7. Pyhtila, JW; Graf, RN; Wax, A, Determining nuclear morphology using an improved angle-resolved low coherence interferometry system, Optics Express, vol. 11 no. 25 (2003), pp. 3473-3484  [abs].
  8. Wax, A; Yang, C; Izatt, JA, Fourier-domain low-coherence interferometry for light-scattering spectroscopy., Optics Letters, vol. 28 no. 14 (July, 2003), pp. 1230-1232 [doi]  [abs].
  9. Wax, A; Yang, C; Müller, MG; Nines, R; Boone, CW; Steele, VE; Stoner, GD; Dasari, RR; Feld, MS, In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry., Cancer Research, vol. 63 no. 13 (2003), pp. 3556-3559  [abs].
  10. Wax, A; Yang, C; Backman, V; Badizadegan, K; Boone, CW; Dasari, RR; Feld, MS, Cellular organization and substructure measured using angle-resolved low-coherence interferometry, Biophysical Journal, vol. 82 no. 4 (2002), pp. 2256-2264 [doi]  [abs].
  11. Yang, C; Wax, A; Dasari, RR; Feld, MS, Phase-dispersion optical tomography, Optics Letters, vol. 26 no. 10 (May, 2001), pp. 686-688, The Optical Society [doi]  [abs].

Curriculum Vitae


Dr. Wax's research interests include optical spectroscopy for early cancer detection, novel microscopy and interferometry techniques.

The study of intact, living cells with optical spectroscopy offers the opportunity to observe cellular structure, organization and dynamics in a way that is not possible with traditional methods. We have developed a set of novel spectroscopic techniques for measuring spatial, temporal and refractive structure on sub-hertz and sub-wavelength scales based on using low-coherence interferometry (LCI) to detect scattered light. We have applied these techniques in different types of cell biology experiments. In one experiment, LCI measurements of the angular pattern of backscattered light are used to determine non-invasively the structure of sub-cellular organelles in cell monolayers, and the components of epithelial tissue from freshly excised rat esophagus. This work has potential as a diagnostic method for early cancer detection. In another experiment, LCI phase measurements are used to examine volume changes of epithelial cells in a monolayer in response to environmental osmolarity changes. Although cell volume changes have been measured previously, this work demonstrates for the first time the volume of just a few cells (2 or 3) tracked continuously and in situ.