Publications [#337393] of Anselm G. Vossen

Papers Published
  1. Adamczyk, L; Adams, JR; Adkins, JK; Agakishiev, G; Aggarwal, MM; Ahammed, Z; Ajitanand, NN; Alekseev, I; Anderson, DM; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, EC; Ashraf, MU; Attri, A; Averichev, GS; Bai, X; Bairathi, V; Barish, K; Behera, A; Bellwied, R; Bhasin, A; Bhati, AK; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, LC; Bordyuzhin, IG; Bouchet, J; Brandenburg, JD; Brandin, AV; Brown, D; Bryslawskyj, J; Bunzarov, I; Butterworth, J; Caines, H; Calderón De La Barca Sánchez, M; Campbell, JM; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chankova-Bunzarova, N; Chatterjee, A; Chattopadhyay, S; Chen, X; Chen, JH; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, HJ; Das, S; Dedovich, TG; Deng, J; Deppner, IM; Derevschikov, AA; Didenko, L; Dilks, C; Dong, X; Drachenberg, JL; Draper, JE; Dunlop, JC; Efimov, LG; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Federicova, P; Fedorisin, J; Feng, Z; Filip, P; Finch, E; Fisyak, Y; Flores, CE; Fujita, J; Fulek, L; Gagliardi, CA; Geurts, F; Gibson, A; Girard, M; Grosnick, D; Gunarathne, DS; Guo, Y; Gupta, A; Guryn, W; Hamad, AI; Hamed, A; Harlenderova, A; Harris, JW; He, L; Heppelmann, S, Azimuthal anisotropy in Cu+Au collisions at s NN =200 GeV, Physical Review C, vol. 98 no. 1 (July, 2018), American Physical Society (APS) [doi] .

    Abstract:
    The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at sNN=200 GeV for harmonics n=1-4 in the pseudorapidity range |η|<1. The directed flow in Cu+Au collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at sNN=200 GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive pseudorapidity values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane (px) in Cu+Au collision also exhibits approximately linear dependence on pseudorapidity with the intercept at about η≈-0.4 (shifted from zero in the Au-going direction), closer to the rapidity of the Cu+Au system center of mass. The observed dependencies find a natural explanation in a picture of the directed flow originating partly due the "tilted source" and partly due to the asymmetry in the initial density distribution. A charge dependence of (px) was also observed in Cu+Au collisions, consistent with an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at sNN=2.76 TeV, indicating a similar magnitude of dipolelike fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multiphase transport model. For all harmonics with n≥2 we observe an approximate scaling of vn with the number of constituent quarks; this scaling works as well in Cu+Au collisions as it does in Au+Au collisions.

Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.