Publications [#319508] of Anuj J Kapadia

Papers Published
  1. Agasthya, GA; Harrawood, BC; Shah, JP; Kapadia, AJ, Sensitivity analysis for liver iron measurement through neutron stimulated emission computed tomography: a Monte Carlo study in GEANT4., Physics in Medicine and Biology, vol. 57 no. 1 (January, 2012), pp. 113-126 [doi] .

    Abstract:
    Neutron stimulated emission computed tomography (NSECT) is being developed as a non-invasive imaging modality to detect and quantify iron overload in the human liver. NSECT uses gamma photons emitted by the inelastic interaction between monochromatic fast neutrons and iron nuclei in the body to detect and quantify the disease. Previous simulated and physical experiments with phantoms have shown that NSECT has the potential to accurately diagnose iron overload with reasonable levels of radiation dose. In this work, we describe the results of a simulation study conducted to determine the sensitivity of the NSECT system for hepatic iron quantification in patients of different sizes. A GEANT4 simulation of the NSECT system was developed with a human liver and two torso sizes corresponding to small and large patients. The iron concentration in the liver ranged between 0.5 and 20 mg g(-1), corresponding to clinically reported iron levels in iron-overloaded patients. High-purity germanium gamma detectors were simulated to detect the emitted gamma spectra, which were background corrected using suitable water phantoms and analyzed to determine the minimum detectable level (MDL) of iron and the sensitivity of the NSECT system. These analyses indicate that for a small patient (torso major axis = 30 cm) the MDL is 0.5 mg g(-1) and sensitivity is ∼13 ± 2 Fe counts/mg/mSv and for a large patient (torso major axis = 40 cm) the values are 1 mg g(-1) and ∼5 ± 1 Fe counts/mg/mSv, respectively. The results demonstrate that the MDL for both patient sizes lies within the clinically significant range for human iron overload.