Publications of Thomas Barthel    :chronological  alphabetical  combined  bibtex listing:

Papers Published
  1. Barthel, T; De Bacco, C; Franz, S, Matrix product algorithm for stochastic dynamics on networks applied to nonequilibrium Glauber dynamics., Physical Review. E, vol. 97 no. 1-1 (January, 2018), pp. 010104 [doi] [abs] .
  2. Schlittler, TM; Mosseri, R; Barthel, T, Phase diagram of the hexagonal lattice quantum dimer model: Order parameters, ground-state energy, and gaps, Physical Review B, vol. 96 no. 19 (November, 2017), pp. 195142-195142 [doi] [abs] .
  3. Binder, M; Barthel, T, Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles, Physical Review B, vol. 95 no. 19 (May, 2017) [doi] .
  4. Barthel, T, Matrix product purifications for canonical ensembles and quantum number distributions, Physical Review B, vol. 94 no. 11 (September, 2016) [doi] .
  5. Gori, L; Barthel, T; Kumar, A; Lucioni, E; Tanzi, L; Inguscio, M; Modugno, G; Giamarchi, T; D'Errico, C; Roux, G, Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices, Physical Review A, vol. 93 no. 3 (March, 2016) [doi] .
  6. Schlittler, T; Barthel, T; Misguich, G; Vidal, J; Mosseri, R, Phase Diagram of an Extended Quantum Dimer Model on the Hexagonal Lattice., Physical Review Letters, vol. 115 no. 21 (November, 2015), pp. 217202 [doi] [abs] .
  7. Binder, M; Barthel, T, Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution, Physical Review B, vol. 92 no. 12 (September, 2015) [doi] .
  8. Mölter, J; Barthel, T; Schollwöck, U; Alba, V, Bound states and entanglement in the excited states of quantum spin chains, Journal of Statistical Mechanics: Theory and Experiment, vol. 2014 no. 10 (October, 2014), pp. P10029-P10029 [doi] .
  9. Halimeh, JC; Wöllert, A; McCulloch, I; Schollwöck, U; Barthel, T, Domain-wall melting in ultracold-boson systems with hole and spin-flip defects, Physical Review A, vol. 89 no. 6 (June, 2014) [doi] .
  10. Cai, Z; Barthel, T, Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems., Physical Review Letters, vol. 111 no. 15 (October, 2013), pp. 150403 [doi] [abs] .
  11. Lake, B; Tennant, DA; Caux, J-S; Barthel, T; Schollwöck, U; Nagler, SE; Frost, CD, Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain., Physical Review Letters, vol. 111 no. 13 (September, 2013), pp. 137205 [doi] [abs] .
  12. Barthel, T, Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes, New Journal of Physics, vol. 15 no. 7 (July, 2013), pp. 073010-073010 [doi] .
  13. Kliesch, M; Barthel, T; Gogolin, C; Kastoryano, M; Eisert, J, Erratum: Dissipative Quantum Church-Turing Theorem [Phys. Rev. Lett. 107 , 120501 (2011)], Physical Review Letters, vol. 109 no. 11 (September, 2012) [doi] .
  14. Barthel, T; Kliesch, M, Quasilocality and efficient simulation of markovian quantum dynamics., Physical Review Letters, vol. 108 no. 23 (June, 2012), pp. 230504 [doi] [abs] .
  15. Barthel, T; Hübener, R, Solving condensed-matter ground-state problems by semidefinite relaxations., Physical Review Letters, vol. 108 no. 20 (May, 2012), pp. 200404 [doi] [abs] .
  16. Kliesch, M; Barthel, T; Gogolin, C; Kastoryano, M; Eisert, J, Dissipative quantum Church-Turing theorem., Physical Review Letters, vol. 107 no. 12 (September, 2011), pp. 120501 [doi] [abs] .
  17. Barthel, T; Kliesch, M; Eisert, J, Real-Space Renormalization Yields Finite Correlations, Physical Review Letters, vol. 105 no. 1 (July, 2010) [doi] .
  18. Pineda, C; Barthel, T; Eisert, J, Unitary circuits for strongly correlated fermions, Physical Review A, vol. 81 no. 5 (May, 2010) [doi] .
  19. Barthel, T; Pineda, C; Eisert, J, Contraction of fermionic operator circuits and the simulation of strongly correlated fermions, Physical Review A, vol. 80 no. 4 (October, 2009) [doi] .
  20. Barthel, T; Schollwöck, U; White, SR, Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group, Physical Review B, vol. 79 no. 24 (June, 2009) [doi] .
  21. Barthel, T; Kasztelan, C; McCulloch, IP; Schollwöck, U, Magnetism, coherent many-particle dynamics, and relaxation with ultracold bosons in optical superlattices, Physical Review A, vol. 79 no. 5 (May, 2009) [doi] .
  22. Roux, G; Barthel, T; McCulloch, IP; Kollath, C; Schollwöck, U; Giamarchi, T, Quasiperiodic Bose-Hubbard model and localization in one-dimensional cold atomic gases, Physical Review A, vol. 78 no. 2 (August, 2008) [doi] .
  23. Barthel, T; Schollwöck, U, Dephasing and the steady state in quantum many-particle systems., Physical Review Letters, vol. 100 no. 10 (March, 2008), pp. 100601 [doi] [abs] .
  24. Vidal, J; Dusuel, S; Barthel, T, Entanglement entropy in collective models, Journal of Statistical Mechanics: Theory and Experiment, vol. 2007 no. 01 (January, 2007), pp. P01015-P01015 [doi] .
  25. Barthel, T; Dusuel, S; Vidal, J, Entanglement entropy beyond the free case., Physical Review Letters, vol. 97 no. 22 (December, 2006), pp. 220402 [doi] [abs] .
  26. Zhou, H-Q; Barthel, T; Fjærestad, JO; Schollwöck, U, Entanglement and boundary critical phenomena, Physical Review A, vol. 74 no. 5 (November, 2006) [doi] .
  27. Barthel, T; Chung, M-C; Schollwöck, U, Entanglement scaling in critical two-dimensional fermionic and bosonic systems, Physical Review A, vol. 74 no. 2 (August, 2006) [doi] .