**Office Location:** 253 Physics**Office Phone:** (919) 660-2462**Email Address:** sch@phy.duke.edu**Web Page:** http://www.phy.duke.edu/~sch/

**Specialties:**

Theoretical nuclear physics

Theoretical particle physics and string theory

Theoretical condensed matter physics

**Education:**

Doctor of Philosophy, Columbia, 1995

B. Tech, Indian Institute of Technology, Madras, India, 1989

**Research Categories:** *Theoretical Nuclear and Particle Physics*

**Current projects:**
Quantum Critical Behavior in Fermion Systems, Using the generalized fermion bag algorithm, Applications to Graphene and Unitary Fermi Gas.

**Research Description:** Prof. Chandrasekharan is interested in understanding quantum field theories non-perturbatively from first principles calculations. His research focuses on lattice formulations with emphasis on strongly correlated fermionic systems of interest in both condensed matter and nuclear physics. He develops novel Monte-Carlo algorithms to study these problems. He is particularly excited about solutions to the notoriously difficult sign problem that haunts quantum systems containing fermions and gauge fields. He recently proposed an idea called the fermion bag approach, using which he has been able to solve numerous sign problems that seemed unsolvable earlier. Using various algorithmic advances over the past decade, he is interested in understanding the properties of quantum critical points containing interacting fermions. Some of his recent publications can be found here.

**Areas of Interest:**

Quantum Field Theories, Lattice formulations,

Critical Phenomena and Monte Carlo Algorithms.

**Teaching (Fall 2014):**

- Physics 765.01,
*Graduate advanced physics*Synopsis- Physics 299, MF 11:45 AM-01:00 PM

**Recent Publications**
(More Publications)
(search)

- E.F. Huffman and S. Chandrasekharan,
*Solution to sign problems in half-filled spin-polarized electronic systems*, Phys. Rev. Letts. (Submitted, November, 2013) (arXiv:1311.0034.) [0034] [abs]. - S. Chandrasekharan,
*Quantum Critical Behavior with Massless Staggered Fermions in Three Dimensions*, Proceedings of Science, vol. Lattice 2013 (2013), pp. 049 [conf.cgi] . - S. Chandrasekharan and A. Li,
*Quantum critical behavior in three dimensional lattice Gross-Neveu models*, Phys. Rev. D, vol. 88 (2013), pp. 021701 [doi] [abs]. - S. Chandrasekharan,
*Fermion Bag Approach to Fermion Sign Problems*, Eur. Phys. J. A, vol. 49 (2013), pp. 90 [doi] [abs]. - Chandrasekharan, Shailesh,
*Fermion Bag Solutions to Sign Problems*, Proceedings of Science, vol. Lattice2012 (December, 2012), pp. 224 .

**Current Ph.D. Students**(Former Students)

**Postdocs Mentored**- Anyi Li (2009 - 2011)
- Jose A. Hoyos Neto (2007 - 2009)
- Ji-Woo Lee (2003/09-2005/08)
- Jaebeom Yoo (2003/09-2005/08)
- Costas Strouthos (2003/01-2004/01)
- David H. Adams (2001/12-2002/08)
- James C Osborn (1999/09-2001/08)