**Office Location:** Science Drive, 253, Physics/Math Bldg., Durham, NC 27708**Office Phone:** (919) 660-2462**Email Address:** sch@phy.duke.edu**Web Page:** http://www.phy.duke.edu/~sch/

**Specialties:**

Theoretical nuclear physics

Theoretical particle physics and string theory

Theoretical condensed matter physics

**Education:**

Ph.D., Columbia University, 1996

Doctor of Philosophy, Columbia, 1995

M.Phil., Columbia University, 1994

M.A., Columbia University, 1992

B. Tech, Indian Institute of Technology, Madras, India, 1989

B.S.E.E., Indian Institute of Technology (India), 1989

**Research Categories:** *Theoretical Nuclear and Particle Physics*

**Current projects:**
Quantum Critical Behavior in Fermion Systems, Using the generalized fermion bag algorithm, Applications to Graphene and Unitary Fermi Gas.

**Research Description:** Prof. Chandrasekharan is interested in understanding quantum field theories non-perturbatively from first principles calculations. His research focuses on lattice formulations with emphasis on strongly correlated fermionic systems of interest in both condensed matter and nuclear physics. He develops novel Monte-Carlo algorithms to study these problems. He is particularly excited about solutions to the notoriously difficult sign problem that haunts quantum systems containing fermions and gauge fields. He recently proposed an idea called the fermion bag approach, using which he has been able to solve numerous sign problems that seemed unsolvable earlier. Using various algorithmic advances over the past decade, he is interested in understanding the properties of quantum critical points containing interacting fermions. Some of his recent publications can be found here.

**Areas of Interest:**

Quantum Field Theories, Lattice formulations,

Critical Phenomena and Monte Carlo Algorithms.

**Recent Publications**
(More Publications)
(search)

- Singh, H; Chandrasekharan, S,
*Qubit regularization of the O (3) sigma model*, Physical Review D, vol. 100 no. 5 (September, 2019) [doi] [abs]. - Banerjee, D; Chandrasekharan, S; Orlando, D; Reffert, S,
*Conformal Dimensions in the Large Charge Sectors at the O(4) Wilson-Fisher Fixed Point.*, Physical Review Letters, vol. 123 no. 5 (August, 2019), pp. 051603 [doi] [abs]. - Singh, H; Chandrasekharan, S,
*Few-body physics on a spacetime lattice in the worldline approach*, Physical Review D, vol. 99 no. 7 (April, 2019) [doi] [abs]. - Ayyar, V; Chandrasekharan, S,
*Generating a mass gap using Feynman diagrams in an asymptotically free theory*, edited by Della Morte, M; Fritzsch, P; Gámiz Sánchez, E; Pena Ruano, C, Epj Web of Conferences, vol. 175 (March, 2018), pp. 11010-11010, E D P SCIENCES [doi] [abs]. - Ayyar, V; Chandrasekharan, S; Rantaharju, J,
*Benchmark results in the 2D lattice Thirring model with a chemical potential*, Physical Review D, vol. 97 no. 5 (March, 2018), American Physical Society (APS) [doi] [abs].

**Highlight:**

Prof. Chandrasekharan is interested in understanding quantum field theories non-perturbatively from first principles calculations. His research focuses on lattice formulations with emphasis on strongly correlated fermionic systems of interest in condensed matter, particle and nuclear physics. He develops novel Monte-Carlo algorithms to study these problems. He is particularly excited about solutions to the notoriously difficult sign problem that haunts quantum systems containing fermions and gauge fields. He recently proposed an idea called the fermion bag approach, using which he has been able to solve numerous sign problems that seemed unsolvable earlier. Using various algorithmic advances over the past decade, he is interested in understanding the properties of quantum critical points containing interacting fermions. Some of his recent publications can be found here.

**Current Ph.D. Students**(Former Students)- Emilie Huffman
- Venkitesh Ayyar

**Postdocs Mentored**- Anyi Li (2009 - 2011)
- Jose A. Hoyos Neto (2007 - 2009)
- Ji-Woo Lee (2003/09-2005/08)
- Jaebeom Yoo (2003/09-2005/08)
- Costas Strouthos (2003/01-2004/01)
- David H. Adams (2001/12-2002/08)
- James C Osborn (1999/09-2001/08)