Publications [#268612] of Bastiaan Driehuys

Papers Published
  1. He, M; Robertson, SH; Kaushik, SS; Freeman, MS; Virgincar, RS; Davies, J; Stiles, J; Foster, WM; McAdams, HP; Driehuys, B, Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI., Magn Reson Imaging, vol. 33 no. 7 (September, 2015), pp. 877-885 [doi] .

    Abstract:
    PURPOSE: The aim of this study was to evaluate the effect of hyperpolarized (129)Xe dose on image signal-to-noise ratio (SNR) and ventilation defect conspicuity on both multi-slice gradient echo and isotropic 3D-radially acquired ventilation MRI. MATERIALS AND METHODS: Ten non-smoking older subjects (ages 60.8±7.9years) underwent hyperpolarized (HP) (129)Xe ventilation MRI using both GRE and 3D-radial acquisitions, each tested using a 71ml (high) and 24ml (low) dose equivalent (DE) of fully polarized, fully enriched (129)Xe. For all images SNR and ventilation defect percentage (VDP) were calculated. RESULTS: Normalized SNR (SNRn), obtained by dividing SNR by voxel volume and dose was higher for high-DE GRE acquisitions (SNRn=1.9±0.8ml(-2)) than low-DE GRE scans (SNRn=0.8±0.2ml(-2)). Radially acquired images exhibited a more consistent, albeit lower SNRn (High-DE: SNRn=0.5±0.1ml(-2), low-DE: SNRn=0.5±0.2ml(-2)). VDP was indistinguishable across all scans. CONCLUSIONS: These results suggest that images acquired using the high-DE GRE sequence provided the highest SNRn, which was in agreement with previous reports in the literature. 3D-radial images had lower SNRn, but have advantages for visual display, monitoring magnetization dynamics, and visualizing physiological gradients. By evaluating normalized SNR in the context of dose-equivalent formalism, it should be possible to predict (129)Xe dose requirements and quantify the benefits of more efficient transmit/receive coils, field strengths, and pulse sequences.

Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.