Publications [#217973] of Henry Everitt

search www.researchgate.net.
Papers Published
  1. Xie, J and Fu, Y and {\"O}zg{\"u}r, {\"U}mit and Moon, Y. T. and Yun, F and Morko, H. and Everitt, Henry O and Sagar, A and Feenstra, R. M. and Inoki, C K and Kuan, T S and Zhou, L and Smith, D. J., Characterization of GaN epitaxial films grown on SiNx and TiNx porous network templates, Gallium Nitride Materials and Devices. Edited by Litton, vol. 6121 (March, 2006), pp. 85--96 [nph-data_query], [doi] .

    Abstract:
    We report on the structural, electrical, and optical characterization of GaN epitaxial layers grown by metalorganic chemical vapor deposition (MOCVD) on SiNx and TiNx porous templates in order to reduce the density of extended defects. Observations by transmission electron microscopy (TEM) indicate an order of magnitude reduction in the dislocation density in GaN layers grown on TiNx and SiNx networks (down to ~108 cm-2) compared with the control GaN layers. Both SiNx and TiNx porous network structures are found to be effective in blocking the threading dislocation from penetrating into the upper layer. Supporting these findings are the results from X-Ray diffraction and low temperature photoluminescence (PL) measurements. The linewidth of the asymmetric X-Ray diffraction (XRD) (1012) peak decreases considerably for the layers grown with the use of SiNx and TiNx layers, which generally suggests the reduction of edge and mixed threading dislocations. In general, further improvement is observed with the addition of a second SiNx layer. The room temperature decay times obtained from biexponential fits to time-resolved photoluminescence (TRPL) data are increased with the inclusion of SiNx and TiNx layers. TRPL results suggest that primarily point-defect and impurity-related nonradiative centers are responsible for reducing the lifetime. The carrier lifetime of 1.86 ns measured for a TiNx network sample is slightly longer than that for a 200 $\mu$m-thick high quality freestanding GaN. Results on samples grown by a new technique called crack-assisted lateral overgrowth, which combines in situ deposition of SiNx mask and conventional lateral overgrowth, are also reported.