Publications [#218013] of Henry Everitt

search www.researchgate.net.
Papers Published
  1. Ni, X and Oezguer, Ue and Morko{\c c}, H and Liliental-Weber, Z and Everitt, H O, Epitaxial lateral overgrowth of a-plane GaN by metalorganic chemical vapor deposition, Journal of Applied Physics, vol. 102 no. 5 (2007), pp. -- [GetabsServlet], [doi] .

    Abstract:
    We report on epitaxial lateral overgrowth (ELO) of (<11(2)over bar0>) a-plane GaN by metalorganic chemical vapor deposition. Different growth rates of Ga- and N-polar wings together with wing tilt create a major obstacle for achieving a smooth, fully coalesced surface in ELO a-plane GaN. To address this issue a two-step growth method was employed to provide a large aspect ratio of height to width in the first growth step followed by enhanced lateral growth in the second by controlling the growth temperature. By this method, the average ratio of Ga- to N-polar wing growth rate has been reduced from 4-6 to 1.5-2, which consequently reduced the wing-tilt induced height difference between the two approaching wings at the coalescence front, thereby making their coalescence much easier. Transmission electron microscopy showed that the threading dislocation density in the wing regions was 1.0x10(8) cm(-2), more than two orders of magnitude lower than that in the window regions (4.2x10(10) cm(-2)). However, a relatively high density of basal stacking faults of 1.2x10(4) cm(-1) was still present in the wing regions as compared to c -plane GaN, where they are rarely observed away from the substrate. Atomic force microscopy (AFM) measurements showed two orders of magnitude higher density of surface pits in the window than in the wing regions, which were considered to be terminated by dislocations (partial ones related to stacking faults and full ones) on the surface. The existence of basal stacking faults was also revealed by AFM measurements on the a-plane ELO sample after wet chemical etching in hot H3PO4/H2SO4 (1:1). The extensions of Ga-polar wings near the meeting fronts were almost free of stacking faults. The improvement of crystalline quality in the overgrown layer by ELO was also verified by near field scanning optical microscopy and time-resolved photoluminescence measurements; the former showing strongly enhanced luminescence from the wing regions, and the latter indicating longer decay times (0.25 ns) compared to a standard a-plane GaN template (40 ps). (C) 2007 American Institute of Physics.