Publications [#218046] of Henry Everitt

Papers Published
  1. Teke, A and {\"O}zg{\"u}r, Umit and Do{\u g}an, S and Gu, X and Morko{\c c}, H and Nemeth, B and Nause, JE and Everitt, HO, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Physical Review B (Condensed Matter and Materials Physics), vol. 70 no. 19 (2004), pp. -- [e195207], [doi] .

    The optical properties of a high quality bulk ZnO, thermally post treated in a forming gas environment are investigated by temperature dependent continuous wave and time-resolved photoluminescence (PL) measurements. Several bound and free exciton transitions along with their first excited states have been observed at low temperatures, with the main neutral-donor-bound exciton peak at 3.3605 eV having a linewidth of 0.7 meV and dominating the PL spectrum at 10 K. This bound exciton transition was visible only below 150 K, whereas the A-free exciton transition at 3.3771 eV persisted up to room temperature. A-free exciton binding energy of 60 meV is obtained from the position of the excited states of the free excitons. Additional intrinsic and extrinsic fine structures such as polariton, two-electron satellites, donor-acceptor pair transitions, and longitudinal optical-phonon replicas have also been observed and investigated in detail. Time-resolved PL measurements at room temperature reveal a biexponential decay behavior with typical decay constants of similar to170 and similar to864 ps for the as-grown sample. Thermal treatment is observed to increase the carrier lifetimes when performed in a forming gas environment.