Gleb Finkelstein, Professor  

Gleb Finkelstein

Office Location: 093 Physics, Science Drive, Durham, NC 27708
Office Phone: (919) 660-2523
Email Address: gleb.finkelstein@duke.edu
Web Page: http://www.phy.duke.edu/~gleb/

Specialties:
Experimental condensed matter physics
Nanophysics
Biological physics

Education:
Ph.D., Weizmann Institute of Science (Israel), 1998
PhD, Weizmann Institute of Science, 1999
B.S., Moscow Institute of Physics and Technology (Russia), 1991

Research Categories: Nanophysics and Biophysics

Current projects: Electronic transport in carbon nanotubes and graphene;, Inorganic nanostructures based on self-assembled DNA scaffolds;, Low-temperature scanning microscopy (AFM);, New probes for intracellular neuronal recordings., Ultra-sharp probes for Intracellular Neuronal Recordings.

Research Description: Gleb Finkelstein is an experimental physicist interested in inorganic and biologically inspired nanostructures: carbon nanotubes, graphene, nanocrystals and self-assembled DNA 'origami'. These objects reveal a variety of interesting electronic properties that may become a basis for future devices and sensors. His group's research is evenly divided between studies of electronic properties of nanostructures, and DNA self-assembly. Recently, he started a collaborative project on developing novel probes for intracellular neural recording.

Recent Publications   (More Publications)   (search)

  1. Larson, TFQ; Zhao, L; Arnault, EG; Wei, M-T; Seredinski, A; Li, H; Watanabe, K; Tanaguchi, T; Amet, F; Finkelstein, G, Noise-induced stabilization of dynamical states in a non-Markovian system (December, Preprint, 2022) [2212.13952]  [abs].
  2. Zhao, L; Arnault, EG; Larson, TFQ; Iftikhar, Z; Seredinski, A; Fleming, T; Watanabe, K; Taniguchi, T; Amet, F; Finkelstein, G, Graphene-Based Quantum Hall Interferometer with Self-Aligned Side Gates., Nano Letters, vol. 22 no. 23 (December, 2022), pp. 9645-9651 [doi]  [abs].
  3. Zhao, L; Iftikhar, Z; Larson, TFQ; Arnault, EG; Watanabe, K; Taniguchi, T; Amet, F; Finkelstein, G, Loss and decoherence at the quantum Hall - superconductor interface (October, Preprint, 2022) [2210.04842]  [abs].
  4. Chiles, J; Arnault, EG; Chen, C-C; Larson, TFQ; Zhao, L; Watanabe, K; Taniguchi, T; Amet, F; Finkelstein, G, Non-Reciprocal Supercurrents in a Field-Free Graphene Josephson Triode (October, Preprint, 2022) [2210.02644]  [abs].
  5. Arnault, EG; Idris, S; McConnell, A; Zhao, L; Larson, TFQ; Watanabe, K; Taniguchi, T; Finkelstein, G; Amet, F, Dynamical Stabilization of Multiplet Supercurrents in Multiterminal Josephson Junctions., Nano Letters, vol. 22 no. 17 (September, 2022), pp. 7073-7079 [doi]  [abs].

Highlight:
Gleb Finkelstein is an experimentalist interested in physics of quantum nanostructures, such as Josephson junctions and quantum dots made of carbon nanotubes, graphene, and topological materials. These objects reveal a variety of interesting electronic properties that may form a basis for future quantum devices.

Current Ph.D. Students   (Former Students)

Postdocs Mentored

  • Francois Amet (September 01, 2014 - present)  
  • Sarah Goldberg (October 1, 2009 - August 01, 2011)  
  • Ulas Coskun (February, 2007 - August, 2009)  
  • Yurij Bomze (2006 - 2011)  
  • Yuriy Bomze (July, 2006 - August 31, 2011)  
  • Adriana Biasco (January 01, 2006 - December 31, 2006)  
  • Alexey Zhukov (October 1, 2003 - February 28, 2006)