Publications [#268897] of G. Allan Johnson

Papers Published
  1. Benveniste, H; Einstein, G; Kim, KR; Hulette, C; Johnson, GA, Detection of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy., Proceedings of the National Academy of Sciences of the United States of America, vol. 96 no. 24 (November, 1999), pp. 14079-14084 [10570201], [doi] .

    Abstract:
    Magnetic resonance microscopy (MRM) theoretically provides the spatial resolution and signal-to-noise ratio needed to resolve neuritic plaques, the neuropathological hallmark of Alzheimer's disease (AD). Two previously unexplored MR contrast parameters, T2* and diffusion, are tested for plaque-specific contrast to noise. Autopsy specimens from nondemented controls (n = 3) and patients with AD (n = 5) were used. Three-dimensional T2* and diffusion MR images with voxel sizes ranging from 3 x 10(-3) mm(3) to 5.9 x 10(-5) mm(3) were acquired. After imaging, specimens were cut and stained with a microwave king silver stain to demonstrate neuritic plaques. From controls, the alveus, fimbria, pyramidal cell layer, hippocampal sulcus, and granule cell layer were detected by either T2* or diffusion contrast. These structures were used as landmarks when correlating MRMs with histological sections. At a voxel resolution of 5.9 x 10(-5) mm(3), neuritic plaques could be detected by T2*. The neuritic plaques emerged as black, spherical elements on T2* MRMs and could be distinguished from vessels only in cross-section when presented in three dimension. Here we provide MR images of neuritic plaques in vitro. The MRM results reported provide a new direction for applying this technology in vivo. Clearly, the ability to detect and follow the early progression of amyloid-positive brain lesions will greatly aid and simplify the many possibilities to intervene pharmacologically in AD.