Publications [#306675] of Alfred T. Goshaw

Papers Published
  1. Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, JA; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, VE; Barnett, BA; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, KR; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E et al., First search for exotic Z Boson decays into photons and neutral pions in hadron collisions., Physical Review Letters, vol. 112 no. 11 (March, 2014), pp. 111803 [doi] .

    A search for forbidden and exotic Z boson decays in the diphoton mass spectrum is presented for the first time in hadron collisions, based on data corresponding to 10.0 fb(-1) of integrated luminosity from proton-antiproton collisions at √s = 1.96 TeV collected by the CDF experiment. No evidence of signal is observed, and 95% credibility level Bayesian upper limits are set on the branching ratios of decays of the Z boson to a photon and neutral pion (which is detected as a photon), a pair of photons, and a pair of neutral pions. The observed branching ratio limits are 2.01 × 10(-5) for Z → π(0)γ, 1.46 × 10(-5) for Z → γγ, and 1.52 × 10(-5) for Z → π(0)π(0). The Z → π(0)γ and Z → γγ limits improve the most stringent results from other experiments by factors of 2.6 and 3.6, respectively. The Z → π(0)π(0) branching ratio limit is the first experimental result on this decay.