Publications [#327601] of Alfred T. Goshaw

Papers Published
  1. Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adams, DL; Adelman, J; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Verzini, MJA; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M et al., Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in [Formula: see text] [Formula: see text][Formula: see text] collisions with the ATLAS detector., The European Physical Journal C - Particles and Fields, vol. 77 no. 3 (January, 2017), pp. 144 [doi] .

    Abstract:
    Two searches for new phenomena in final states containing a same-flavour opposite-sign lepton (electron or muon) pair, jets, and large missing transverse momentum are presented. These searches make use of proton-proton collision data, collected during 2015 and 2016 at a centre-of-mass energy [Formula: see text] [Formula: see text] by the ATLAS detector at the large hadron collider, which correspond to an integrated luminosity of [Formula: see text]. Both searches target the pair production of supersymmetric particles, squarks or gluinos, which decay to final states containing a same-flavour opposite-sign lepton pair via one of two mechanisms: a leptonically decaying Z boson in the final state, leading to a peak in the dilepton invariant-mass distribution around the Z boson mass; and decays of neutralinos (e.g. [Formula: see text]), yielding a kinematic endpoint in the dilepton invariant-mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted in simplified models of gluino-pair (squark-pair) production, and provide sensitivity to gluinos (squarks) with masses as large as 1.70 [Formula: see text] (980 [Formula: see text]).