Publications [#307747] of Ashutosh V. Kotwal

Papers Published
  1. Aad, G; Abbott, B; Abdallah, J; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, BS; Adams, DL; Addy, TN; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, JA; Aharrouche, M; Ahlen, SP; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, TPA; Akimoto, G; Akimov, AV; Akiyama, A; Aktas, A; Alam, MS; Alam, MA; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, IN; Alessandria, F; Alexa, C et al., Measurement of inclusive jet and dijet production in pp collisions at √s=7TeV using the ATLAS detector, Physical Review D - Particles, Fields, Gravitation, and Cosmology, vol. 86 no. 1 (2012) [doi] .

    Abstract:
    Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kt algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37pb-1. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading jets. The measurements are performed in the jet rapidity range |y|<4.4, covering jet transverse momenta from 20 GeV to 1.5 TeV and dijet invariant masses from 70 GeV to 5 TeV. The data are compared to expectations based on next-to-leading-order QCD calculations corrected for nonperturbative effects, as well as to next-to-leading-order Monte Carlo predictions. In addition to a test of the theory in a new kinematic regime, the data also provide sensitivity to parton distribution functions in a region where they are currently not well-constrained. © 2012 CERN. Published by the American Physical Society under the terms of the http://creativecommons.org/licenses/by/ 3.0/ Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.