**Office Location:** 249 Physics**Office Phone:** 660 2555**Email Address:** mehen@phy.duke.edu**Web Page:** http://www.phy.duke.edu/~mehen

**Specialties:**

Theoretical particle physics and string theory

Theoretical nuclear physics

**Education:**

Ph.D., Johns Hopkins University, 1998

B.S., University of Virginia, 1992

**Research Categories:** *Theoretical Nuclear and Particle Physics*

**Research Description:** Prof. Thomas Mehen works primarily on Quantum Chromodynamics (QCD) and
the application of effective field theory to problems in hadronic physics.
Effective field theories exploit the symmetries of hadrons to make model
independent predictions when the dynamics of these hadrons are too hard to
solve explicitly. For example, the properties of a hadron containing a
very heavy quark are insensitive to the orientation of the heavy quark
spin. Prof. Mehen has used this heavy quark spin symmetry to make
predictions for the production and decay of heavy mesons and quarkonia at
collider experiments. Another example is the chiral symmetry of QCD which
is a consequence of the lightness of the up and down quarks. The
implications of this symmetry for the force between nucleons is a subject
of Prof. Mehen's research. Prof. Mehen has also worked on effective field
theory for nonrelativistic particles whose short range interactions are
characterized by a large scattering length. This theory has been
successfully applied to low energy two- and three-body nuclear processes.
Some of Prof. Mehen's work is interdisciplinary. For example, techniques
developed for nuclear physics have been used to calculate three-body
corrections to the energy density of a Bose-Einstein condensate whose
atoms have large scattering lengths. Prof. Mehen has also worked on novel
field theories which arise from unusual limits of string theory. Examples
include noncommutative field theories and theories of tachyonic modes on
non-BPS branes.

**Teaching (Fall 2014):**

- Physics 760.01,
*Math methods of physics*Synopsis- Lsrc d243, MW 10:05 AM-11:20 AM

**Recent Publications**
(More Publications)
(search)

- Thomas Mehen and Joshua W. Powell,
*Line shapes in Υ(5S)→B*, Phys. Rev. D88:034017 (2013) [5459] .^{(∗)}B^{(∗)}π with Z(10610) and Z(10650) using effective field theory - S. Fleming, A.K. Leibovich, T. Mehen, and I.Z. Rothstein,
*Anomalous dimensions of the double parton fragmentation functions*, Phys. Rev. D87:074022 (2013) [3822] . - S. Fleming, A.K. Leibovich, T. Mehen, and I.Z. Rothstein,
*The Systematics of Quarkonium Production at the LHC and Double Parton Fragmentation*, Phys.Rev. D86:094012 (2012) [3822] . - Sean Fleming and Thomas Mehen,
*The decay of the X(3872) into &chi*, Phys.Rev. D85:014016 (2012) [0265] ._{cJ}and the Operator Product Expansion in XEFT - Thomas Mehen and Di-Lun Yang,
*On the Role of Charmed Meson Loops in Charmonium Decays*, Phys.Rev. D85:014002 (2012) [3884] .

**Current Ph.D. Students**(Former Students)- Reggie Bain
- Yiannis Makris
- Dilun Yang
- Jie Hu

**Postdocs Mentored**- Jared Vanasse (2012- present)
- Chul Kim (September 2007 -December 2009)
- Ahmad Idilbi (September, 2006 - February, 2010)
- Brian Tiburzi (September, 2004 - August, 2006)
- Carlos Schat (2002/09-2004/09)