Publications [#343714] of Thomas C. Mehen

Papers Published
  1. Yao, X; Mehen, T, Quarkonium in-medium transport equation derived from first principles, Physical Review D, vol. 99 no. 9 (May, 2019) [doi] .

    © 2019 authors. Published by the American Physical Society. We use the open quantum system formalism to study the dynamical in-medium evolution of quarkonium. The system of quarkonium is described by potential nonrelativistic QCD while the environment is a weakly coupled quark-gluon plasma in local thermal equilibrium below the melting temperature of the quarkonium. Under the Markovian approximation, it is shown that the Lindblad equation leads to a Boltzmann transport equation if a Wigner transform is applied to the system density matrix. Our derivation illuminates how the microscopic time reversibility of QCD is consistent with the time-irreversible in-medium evolution of quarkonium states. Static screening, dissociation, and recombination of quarkonium are treated in the same theoretical framework. In addition, quarkonium annihilation is included in a similar way, although the effect is negligible for the phenomenology of the current heavy ion collision experiments. The methods used here can be extended to study quarkonium dynamical evolution inside a strongly coupled QGP, a hot medium out of equilibrium, or cold nuclear matter, which is important to studying quarkonium production in heavy ion, proton-ion, and electron-ion collisions.