Publications [#248237] of Kate Scholberg

Papers Published
  1. Swanson, MEC; Abe, K; Hosaka, J; Iida, T; Ishihara, K; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Obayashi, Y; Ogawa, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Ueshima, K; Higuchi, I; Ishihara, C; Ishitsuka, M; Kajita, T; Kaneyuki, K; Mitsuka, G; Nakayama, S; Nishino, H; Okada, A; Okumura, K; Saji, C; Takenaga, Y; Clark, S; Desai, S; Dufour, F; Kearns, E; Likhoded, S; Litos, M; Raaf, JL; Stone, JL; Sulak, LR; Wang, W; Goldhaber, M; Casper, D et al., Search for diffuse astrophysical neutrino flux using ultra-high-energy upward-going muons in super-kamiokande I, The Astrophysical Journal, vol. 652 no. 1 I (2006), pp. 206-215 [pdf], [doi] .

    Many astrophysical models predict a diffuse flux of high-energy neutrinos from active galactic nuclei and other extragalactic sources. At muon energies above 1 TeV, the upward-going muon flux induced by neutrinos from active galactic nuclei is expected to exceed the flux due to atmospheric neutrinos. We have performed a search for this astrophysical neutrino flux by looking for upward-going muons in the highest energy data sample from the Super-Kamiokande detector using 1679.6 live days of data. We found one extremely high energy upward-going muon event, compared with an expected atmospheric neutrino background of 0.46 ± 0.23 events. Using this result, we set an upper limit on the diffuse flux of upward-going muons due to neutrinos from astrophysical sources in the muon energy range 3.16-100 TeV. © 2006. The American Astronomical Society. All rights reserved.