Publications [#309537] of Seog Oh

Papers Published
  1. Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, MG; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, VE; Barnett, BA; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E et al., Top-quark mass measurement from dilepton events at CDF II., Physical Review Letters, vol. 96 no. 15 (April, 2006), pp. 152002 [doi] .

    We report a measurement of the top-quark mass using events collected by the CDF II detector from pp collisions at square root of s = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function for the top-quark mass in events that are consistent with tt --> bl(-)nu(l)bl'+ nu'(l) decays. The likelihood is formed as the convolution of the leading-order matrix element and detector resolution functions. The joint likelihood is the product of likelihoods for each of 33 events collected in 340 pb(-1) of integrated luminosity, yielding a top-quark mass M(t) = 165.2 +/- 6.1(stat) +/- 3.4(syst) GeV/c2. This first application of a matrix-element technique to tt --> bl+ nu(l)bl'- nu(l') decays gives the most precise single measurement of M(t) in dilepton events. Combined with other CDF run II measurements using dilepton events, we measure M(t) = 167.9 +/- 5.2(stat) +/- 3.7(syst) GeV/c2.