
Papers Published
 S. Tlupova and J. T. Beale, Nearly singular integrals in 3D Stokes flow,
Commun. Comput. Phys., vol. 14
(2013),
pp. 120727 [pdf]
 W. Ying and J. T. Beale, A fast accurate boundary integral method for potentials on closely packed cells,
Commun. Comput. Phys., vol. 14
(2013),
pp. 107393 [pdf]
 A. T. Layton and J. T. Beale, A partially implicit hybrid method for computing interface motion in Stokes flow,
Discrete and Continuous Dynamical Systems B, vol. 17
(2012),
pp. 113953 [pdf]
 J. T. Beale, Partially implicit motion of a sharp interface in NavierStokes flow,
J. Comput. Phys., vol. 231
(2012),
pp. 615972 [pdf]
 J. T. Beale, Smoothing properties of implicit finite difference methods for a diffusion equation in maximum norm,
SIAM J. Numer. Anal., vol. 47
(2009),
pp. 247695 [pdf]
 J. T. Beale and A. T. Layton, A velocity decomposition approach for moving interfaces in viscous fluids,
J. Comput. Phys. 228, 335867
(2009) [pdf]
 J. T. Beale, D. Chopp, R LeVeque, and Z. Li, Correction to the article A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources by Vaughan et al.,
Commun. Appl. Math. Comput. Sci., vol. 3
(2008),
pp. 95100 [pdf]
 J. T. Beale, A proof that a discrete delta function is secondorder accurate,
J. Comput. Phys., vol. 227
(2008),
pp. 219597 [pdf]
 J. T. Beale and J. Strain, Locally corrected semiLagrangian methods for Stokes flow with moving elastic interfaces,
J. Comput. Phys., vol. 227
(2008),
pp. 38963920 [pdf]
 J. T. Beale and A. T. Layton, On the accuracy of finite difference methods for elliptic problems with interfaces,
Commun. Appl. Math. Comput. Sci., vol. 1
(2006),
pp. 91119 [pdf]
 G. R. Baker and J. T. Beale, Vortex blob methods applied to interfacial motion,
J. Comput. Phys., vol. 196
(2004),
pp. 23358 [pdf]
 J. T. Beale, A gridbased boundary integral method for elliptic problems in three dimensions,
SIAM J. Numer. Anal., vol. 42
(2004),
pp. 599620 [pdf]
 J. T. Beale, Methods for computing singular and nearly singular integrals,
J. Turbulence, vol. 3, (2002), article 041 (4 pp.)
[pdf]
 J. T. Beale, Discretization of Layer Potentials and Numerical Methods for Water Waves,
Proc. of Workshop on Kato's Method and Principle for Evolution Equations in Mathematical Physics, H. Fujita, S. T. Kuroda, H.Okamoto, eds., Univ. of Tokyo Press, pp. 1826.
 J. T. Beale, M.C. Lai, A Method for Computing Nearly Singular Integrals,
SIAM J. Numer. Anal., 38 (2001), 190225
[ps]
 J. T. Beale, A Convergent Boundary Integral Method for ThreeDimensional Water Waves,
Math. Comp. 70 (2001), 9771029
[ps]
 J. T. Beale, Boundary Integral Methods for ThreeDimensional Water Waves,
Equadiff 99, Proceedings of the International Conference on Differential Equations, Vol. 2, pp. 136978
[ps]
 J. T. Beale, T.Y. Hou, J.S. Lowengrub, Stability of Boundary Integral Methods for Water Waves,
Nonlinear Evolutionary Partial Differential Equations, X. X. Ding and T.P. Liu eds., A.M.S., 1997, 10727.
 J. T. Beale, T. Y. Hou and J. S. Lowengrub, Convergence of a Boundary Integral Method for Water Waves,
SIAM J. Numer. Anal. 33 (1996), 17971843.
 J. T. Beale, A. Lifschitz, W.H. Suters, The Onset of Instability in Exact Vortex Rings with Swirl,
J. Comput. Phys. 129 (1996) 829
 J. T. Beale, T.Y. Hou, J.S. Lowengrub, Stability of Boundary Integral Methods for Water Waves,
Advances in MultiFluid Flows, Y. Renardy et al., ed., pp. 24145, SIAM, Philadelphia, 1996.
 J. T. Beale, A. Lifschitz, W.H. Suters, A Numerical and Analytical Study of Vortex Rings with Swirl,
Vortex Flows and Related Numerical Methods, II, ESAIM Proc. 1, 56575, Soc. Math. Appl. Indust., Paris, 1996.
 J. T. Beale, Analytical and Numerical Aspects of Fluid Interfaces,
Proc. International Congress of Mathematicians 1994, S. Chatterji, ed., Vol. II, pp. 105564, Birkhauser, Basel, 1995.
 J. T. Beale, C. Greengard, Convergence of EulerStokes Splitting of the NavierStokes Equations,
Comm. Pure Appl. Math. 47 (1994), 10831115.
 J. T. Beale, T. Y. Hou, J. S. Lowengrub, and M. Shelley, Spatial and Temporal Stability Issues for Interfacial Flows with Surface Tension,
Mathl. Comput. Modeling 20 (1994), No. 10/11, 127
 A. Bourgeois, J. T. Beale, Validity of the Quasigeostrophic Model for Large Scale Flow in the Atmosphere and Ocean,
SIAM J. Math. Anal. 25 (1994), 102368.
 J. T. Beale, T. Y. Hou, J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,
Comm. Pure Appl. Math. 46 (1993), 12691301.
 J. T. Beale, T. Y. Hou, J. S. Lowengrub, On the
wellposedness of twofluid interfacial flows with surface
tension,
Singularities in Fluids, Plasmas, and Optics,
R. Caflisch et al., ed., pp. 1138, NATO ASI Series, Kluwer, 1993.
 J. T. Beale, E. Thomann, C. Greengard, Operator splitting
for NavierStokes and the ChorinMarsden product formula,
Vortex Flows and Related Numerical Methods, J. T. Beale et al.,
ed., pp. 2738, NATO ASI Series, Kluwer, 1993.
 J. T. Beale, The approximation of weak solutions to the Euler equations by
vortex elements,
Multidimensional Hyperbolic Problems and
Computations, J. Glimm et al., ed., pp. 2337, SpringerVerlag,
New York, 1991.
 J. T. Beale, Exact solitary water waves with capillary ripples at infinity,
Comm. Pure Appl. Math. 44 (1991), 211257.
 J. T. Beale, A. Eydeland, B. Turkington, Numerical tests of 3D vortex
methods using a vortex ring with swirl,
Vortex Dynamics and Vortex Methods, C. Anderson and C. Greengard, ed., pp. 19, A.M.S., 1991.
 J. T. Beale, Solitary water waves with ripples beyond all orders,
Asymptotics beyond All Orders, H. Segur et al., ed., pp. 29398, NATO ASI Series, Plenum, 1991.
 J. T. Beale, Largetime behavior of model gases with a discrete set of
velocities,
Mathematics Applied to Science, J. Goldstein
et al., ed. pp. 112, Academic Press, Orlando, 1988.
 J. T. Beale, On the accuracy of vortex methods at large times,
Computational Fluid Dynamics
and Reacting Gas Flows, B. Engquist et al., ed., pp. 1932,
SpringerVerlag, New York, 1988.
 J. T. Beale, D. Schaeffer, Nonlinear behavior of model equations which are linearly illposed,
Comm. P. D. E. 13 (1988), 42367.
 J. T. Beale, Existence, regularity, and decay of viscous surface waves,
Nonlinear Systems of Partial Differential Equations
in Applied Mathematics, Part 2, Lectures in Applied Mathematics,
Vol. 23, A.M.S., Providence, 1986, 13748.
 J. T. Beale, A convergent threedimensional vortex method with gridfree
stretching,
Math. Comp. 46 (1986), 40124 and S15S20.
 J. T. Beale, Largetime behavior of discrete velocity Boltzmann equations,
Comm. Math. Phys. 106 (1986), 65978.
 J. T. Beale, A. Majda, High order accurate vortex methods with explicit velocity kernels,
J. Comp. Phys. 58 (1985), 188208.
 J. T. Beale, T. Nishida, Largetime behavior of viscous surface waves,
NorthHolland Mathematics Studies, 128 (1985), 114.
 J. T. Beale, Largetime behavior of the Broadwell model of a discrete velocity
gas,
Comm. Math. Phys. 102 (1985), 21735.
 J. T. Beale, Largetime regularity of viscous surface waves,
Arch. Rational
Mech. Anal. 84 (1984), 30752.
 J. T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3D
Euler equations,
Comm. Math. Phys. 94 (1984), 6166.
 J. T. Beale, A. Majda, Vortex methods for fluid flow in two or three dimensions,
Contemp. Math. 28 (1984), 22129.
 J. T. Beale, Largetime regularity of viscous surface waves,
Contemp. Math.
17 (1983), 3133.
 J. T. Beale, A. Majda, Vortex methods I: Convergence in three dimensions,
Math. Comp. 39 (1982), 127.
 J. T. Beale, A. Majda, Vortex methods II: Higher order accuracy in two and three
dimensions,
Math. Comp. 39 (1982), 2952.
 J. T. Beale, A. Majda, The design and numerical analysis of vortex methods,
Transonic, Shock, and Multidimensional Flows, R. E. Meyer, ed., Academic Press, New York, 1982.
 J. T. Beale, The initial value problem for the NavierStokes equations with a
free surface,
Comm. Pure Appl. Math. 34 (1981), 359392.
 J. T. Beale, A. Majda, Rates of convergence for viscous splitting of the NavierStokes
equations,
Math. Comp. 37 (1981), 243259.
 J. T. Beale, Water waves generated by a pressure disturbance on a steady stream,
Duke Math. J. 47 (1980), 297323.
 J. T. Beale, The existence of cnoidal water waves with surface tension,
J. Differential Eqns. 31(1979), 230263.
 J. T. Beale, Acoustic scattering from locally reacting surfaces,
Indiana Univ.
Math. J. 26 (1977), 199222.
 J. T. Beale, Eigenfunction expansions for objects floating in an open sea,
Comm. Pure Appl. Math. 30 (1977), 283313.
 J. T. Beale, The existence of solitary water waves,
Comm. Pure Appl. Math.
30 (1977), 373389.
 J. T. Beale, Spectral properties of an acoustic boundary condition,
Indiana Univ. Math. J. 25 (1976), 895917.
 J. T. Beale, Purely imaginary scattering frequencies for exterior domains,
Duke Math. J. 41 (1974), 607637.
 J. T. Beale, S. I. Rosencrans, Acoustic boundary conditions,
Bull. Amer. Math. Soc. 80
(1974), 12761278.
 J. T. Beale, Scattering frequencies of resonators,
Comm. Pure Appl. Math. 26 (1973), 549563.
Papers Accepted
 J. T. Beale, Uniform error estimates for NavierStokes flow with an exact moving boundary using the immersed interface method,
SIAM J. Numer. Anal.
(2015) [pdf]
Papers Submitted
 J. t. Beale, W. YIng, and J. R. Wilson, A simple method for computing singular or nearly singular integrals on closed surfaces,
Commun. Comput. Phys.
(August, 2015) [pdf]
