Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#243664] of Anita T. Layton

Papers Published

  1. Layton, AT; Dantzler, WH; Pannabecker, TL, Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter., American journal of physiology. Renal physiology, vol. 302 no. 5 (2012), pp. F591-F605 [22088433], [doi]
    (last updated on 2017/11/18)

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320