Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#304488] of Anita T. Layton

Papers Published

  1. Layton, AT; Layton, HE, Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney., American journal of physiology. Renal physiology, vol. 301 no. 5 (November, 2011), pp. F1047-F1056 [21753076], [doi]
    (last updated on 2017/11/24)

    It has become widely accepted that the osmolality gradient along the corticomedullary axis of the mammalian outer medulla is generated and sustained by a process of countercurrent multiplication: active NaCl absorption from thick ascending limbs is coupled with the counterflow configuration of the descending and ascending limbs of the loops of Henle to generate an axial osmolality gradient along the outer medulla. However, aspects of anatomic structure (e.g., the physical separation of the descending limbs of short loops of Henle from contiguous ascending limbs), recent physiologic experiments (e.g., those that suggest that the thin descending limbs of short loops of Henle have a low osmotic water permeability), and mathematical modeling studies (e.g., those that predict that water-permeable descending limbs of short loops are not required for the generation of an axial osmolality gradient) suggest that countercurrent multiplication may be an incomplete, or perhaps even erroneous, explanation. We propose an alternative explanation for the axial osmolality gradient: we regard the thick limbs as NaCl sources for the surrounding interstitium, and we hypothesize that the increasing axial osmolality gradient along the outer medulla is primarily sustained by an increasing ratio, as a function of increasing medullary depth, of NaCl absorption (from thick limbs) to water absorption (from thin descending limbs of long loops of Henle and, in antidiuresis, from collecting ducts). We further hypothesize that ascending vasa recta that are external to vascular bundles will carry, toward the cortex, an absorbate that at each medullary level is hyperosmotic relative to the adjacent interstitium.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320