Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#243349] of J. Thomas Beale

Papers Published

  1. Beale, JT; Hou, TY; Lowengrub, J, Convergence of a boundary integral method for water waves, Siam Journal on Numerical Analysis, vol. 33 no. 5 (January, 1996), pp. 1797-1843, Society for Industrial & Applied Mathematics (SIAM) [doi]
    (last updated on 2019/04/26)

    We prove nonlinear stability and convergence of certain boundary integral methods for time-dependent water waves in a two-dimensional, inviscid, irrotational, incompressible fluid, with or without surface tension. The methods are convergent as long as the underlying solution remains fairly regular (and a sign condition holds in the case without surface tension). Thus, numerical instabilities are ruled out even in a fully nonlinear regime. The analysis is based on delicate energy estimates, following a framework previously developed in the continuous case [Beale, Hou, and Lowengrub, Comm. Pure Appl. Math., 46 (1993), pp. 1269-1301]. No analyticity assumption is made for the physical solution. Our study indicates that the numerical methods must satisfy certain compatibility conditions in order to be stable. Violation of these conditions will lead to numerical instabilities. A breaking wave is calculated as an illustration.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320