Publications of Benoit Charbonneau

Papers Published

  1. Benoit Charbonneau and Jacques Hurtubise, The Nahm transform for calorons, in The many facets of geometry: a tribute to Nigel Hitchin, edited by Jean-Pierre Bourguignon, Oscar Garcia-Prada and Simon Salamon (July, 2010), Oxford University Press, ISBN 978-0-19-953492-0
  2. Benoit Charbonneau and Jacques Hurtubise, Singular Hermitian-Einstein monopoles on the product of a circle and a Riemann surface, International Mathematics Research Notices (April, 2010)
  3. Benoit Charbonneau, Yuriy Svyrydov, and P.F. Tupper, Convergence in the Prokhorov Metric of Weak Methods for Stochastic Differential Equations, IMA Journal of Numerical Analysis, vol. 30 no. 2 (2010), pp. 579-594
  4. J.A. van Meel, B. Charbonneau, A. Fortini, and P. Charbonneau, Hard-sphere crystallization gets rarer with increasing dimension, Phys. Rev. E, vol. 80 (2009), pp. 061110
  5. Juli Atherton, Benoit Charbonneau, Xiaojie Zhou, David Wolfson, Lawrence Joseph and Alain C. Vandal, Bayesian optimal design for changepoint problems, Canadian Journal of Statistics, vol. 37 no. 4 (2009), pp. 495-513
  6. Benoit Charbonneau and Jacques Hurtubise, Calorons, Nahm's equations on S^1 and bundles over P^1xP^1, Communications in Mathematical Physics, vol. 280 no. 2 (2008), pp. 315--349, ISSN 0010-3616
  7. Charbonneau, Benoit, From spatially periodic instantons to singular monopoles, Communications in Analysis and Geometry, vol. 14 no. 1 (2006), pp. 183--214, ISSN 1019-8385

Papers Accepted

  1. Benoit Charbonneau, Patrick Charbonneau, Gilles Tarjus, Geometrical frustration and static correlations in a simple glass former, Phys. Rev. L (December, 2011)

Papers Submitted

  1. Benoit Charbonneau and Mark Stern, Asymptotic Hodge Theory of Vector Bundles (2011)


  1. Benoit Charbonneau, Various MathSciNet reviews (2007 - present)
  2. Benoit Charbonneau, Analytic aspects of periodic instantons (2004), Cambridge, MA, USA (MIT PhD thesis, supervised by Tomasz Mrowka.)
  3. Benoit Charbonneau, Introduction au théorème de Riemann-Roch (1999) (UQAM MSc Thesis, supervised by Pierre Bouchard and François Lalonde.)