Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#287083] of Hubert Bray

Papers Published

  1. Bray, H; Miao, P, On the capacity of surfaces in manifolds with nonnegative scalar curvature, Inventiones Mathematicae, vol. 172 no. 3 (June, 2008), pp. 459-475, Springer Nature, ISSN 0020-9910 [arXiv:0707.3337v1], [doi]
    (last updated on 2022/07/03)

    Given a surface in an asymptotically flat 3-manifold with nonnegative scalar curvature, we derive an upper bound for the capacity of the surface in terms of the area of the surface and the Willmore functional of the surface. The capacity of a surface is defined to be the energy of the harmonic function which equals 0 on the surface and goes to 1 at ∞. Even in the special case of ℝ3, this is a new estimate. More generally, equality holds precisely for a spherically symmetric sphere in a spatial Schwarzschild 3-manifold. As applications, we obtain inequalities relating the capacity of the surface to the Hawking mass of the surface and the total mass of the asymptotically flat manifold. © 2008 Springer-Verlag.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320