Math @ Duke

Publications [#327666] of Guillermo Sapiro
Papers Published
 Pisharady, PK; Sotiropoulos, SN; DuarteCarvajalino, JM; Sapiro, G; Lenglet, C, Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning.,
Neuroimage, vol. 167
(February, 2018),
pp. 488503 [doi]
(last updated on 2019/01/23)
Abstract: We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inferencebased Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (undersampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from undersampled qspace. The algorithm improves parameter estimation from dMRI through datadependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and invivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For undersampled data, the algorithm is also shown to produce more reliable estimates.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

