Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#324840] of Richard Hain


Papers Published

  1. Hain, R, Notes on the Universal Elliptic KZB Equation, Pure and Applied Mathematics Quarterly, vol. 12 no. 2 (July, 2016), International Press [arXiv:1309.0580], [1309.0580v3]
    (last updated on 2017/12/14)

    The universal elliptic KZB equation is the integrable connection on the pro-vector bundle over M_{1,2} whose fiber over the point corresponding to the elliptic curve E and a non-zero point x of E is the unipotent completion of \pi_1(E-{0},x). This was written down independently by Calaque, Enriquez and Etingof (arXiv:math/0702670), and by Levin and Racinet (arXiv:math/0703237). It generalizes the KZ-equation in genus 0. These notes are in four parts. The first two parts provide a detailed exposition of this connection (following Levin-Racinet); the third is a leisurely exploration of the connection in which, for example, we compute the limit mixed Hodge structure on the unipotent fundamental group of the Tate curve minus its identity. In the fourth part we elaborate on ideas of Levin and Racinet and explicitly compute the connection over the moduli space of elliptic curves with a non-zero abelian differential, showing that it is defined over Q.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320