Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#246880] of Jian-Guo Liu

Papers Published

  1. Liu, JG; Liu, J; Pego, RL, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate, Communications on Pure and Applied Mathematics, vol. 60 no. 10 (October, 2007), pp. 1443-1487, WILEY, ISSN 0010-3640 [doi]
    (last updated on 2019/06/17)

    For strong solutions of the incompressible Navier-Stokes equations in bounded domains with velocity specified at the boundary, we establish the unconditional stability and convergence of discretization schemes that decouple the updates of pressure and velocity through explicit time stepping for pressure. These schemes require no solution of stationary Stokes systems, nor any compatibility between velocity and pressure spaces to ensure an inf-sup condition, and are representative of a class of highly efficient computational methods that have recently emerged. The proofs are simple, based upon a new, sharp estimate for the commutator of the Laplacian and Helmholtz projection operators. This allows us to treat an unconstrained formulation of the Navier-Stokes equations as a perturbed diffusion equation. ©2006 Wiley Periodicals, Inc.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320