Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#347994] of Jian-Guo Liu

Papers Published

  1. Zhan, Q; Zhuang, M; Fang, Y; Liu, J-G; Liu, QH, Green's function for anisotropic dispersive poroelastic media based on the Radon transform and eigenvector diagonalization., Proceedings. Mathematical, physical, and engineering sciences, vol. 475 no. 2221 (January, 2019), pp. 20180610 [doi] [high impact paper]
    (last updated on 2024/04/24)

    Abstract:
    A compact Green's function for general dispersive anisotropic poroelastic media in a full-frequency regime is presented for the first time. First, starting in a frequency domain, the anisotropic dispersion is exactly incorporated into the constitutive relationship, thus avoiding fractional derivatives in a time domain. Then, based on the Radon transform, the original three-dimensional differential equation is effectively reduced to a one-dimensional system in space. Furthermore, inspired by the strategy adopted in the characteristic analysis of hyperbolic equations, the eigenvector diagonalization method is applied to decouple the one-dimensional vector problem into several independent scalar equations. Consequently, the fundamental solutions are easily obtained. A further derivation shows that Green's function can be decomposed into circumferential and spherical integrals, corresponding to static and transient responses, respectively. The procedures shown in this study are also compatible with other pertinent multi-physics coupling problems, such as piezoelectric, magneto-electro-elastic and thermo-elastic materials. Finally, the verifications and validations with existing analytical solutions and numerical solvers corroborate the correctness of the proposed Green's function.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320