Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#314792] of Mauro Maggioni

Papers Accepted

  1. Maggioni, M; Minsker, S; Strawn, N, Multiscale dictionary learning: Non-asymptotic bounds and robustness, Journal of Machine Learning Research, vol. 17 (January, 2016), ISSN 1532-4435 (accepted for publication.) [arxiv:1401.5833]
    (last updated on 2019/02/17)

    © 2016 Mauro Maggioni, Stanislav Minsker, and Nate Strawn. High-dimensional datasets are well-approximated by low-dimensional structures. Over the past decade, this empirical observation motivated the investigation of detection, measurement, and modeling techniques to exploit these low-dimensional intrinsic structures, yielding numerous implications for high-dimensional statistics, machine learning, and signal processing. Manifold learning (where the low-dimensional structure is a manifold) and dictionary learning (where the low-dimensional structure is the set of sparse linear combinations of vectors from a finite dictionary) are two prominent theoretical and computational frameworks in this area. Despite their ostensible distinction, the recently-introduced Geometric Multi-Resolution Analysis (GMRA) provides a robust, computationally eficient, multiscale procedure for simultaneously learning manifolds and dictionaries. In this work, we prove non-asymptotic probabilistic bounds on the approximation error of GMRA for a rich class of data-generating statistical models that includes "noisy" manifolds, thereby establishing the theoretical robustness of the procedure and confirming empirical observations. In particular, if a dataset aggregates near a low-dimensional manifold, our results show that the approximation error of the GMRA is completely independent of the ambient dimension. Our work therefore establishes GMRA as a provably fast algorithm for dictionary learning with approximation and sparsity guarantees. We include several numerical experiments confirming these theoretical results, and our theoretical framework provides new tools for assessing the behavior of manifold learning and dictionary learning procedures on a large class of interesting models.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320