Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications of James Nolen    :chronological  alphabetical  combined  bibtex listing:

Papers Published

  1. J. Lu and J. Nolen, Reactive trajectories and the transition path process., Probability Theory and Related Fields (January, 2014) [1744], [doi]
  2. J. Nolen, Normal approximation for a random elliptic equation, Probability Theory and Related Fields, vol. 159 no. 3 (2014), pp. 661-700 [pdf], [doi]
  3. F. Hamel, J. Nolen, J.-M. Roquejoffre, L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Networks and Heterogeneous Media, vol. 8 no. 1 (2013), pp. 275-289 [pdf], [doi]
  4. T. Hotz, S. Huckemann, H. Le, J. Marron, J. Mattingly, E. Miller, J. Nolen, M. Owen, V. Patrangenaru, S. Skwere, Sticky central limit theorem on open books, Annals of Applied Probability, vol. 23 no. 6 (2013), pp. 2238-2258 [4267], [doi]
  5. A. Mellet and J. Nolen, Capillary drops on a rough surface, Interfaces and Free Boundaries, vol. 14 (2012), pp. 167-184 [doi]
  6. J. Nolen, G. Pavliotis, A. Stuart, Multiscale modeling and inverse problems, in Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, edited by I.G. Graham, T.Y. Hou, O. Lakkis and R. Scheichl (2012), Springer [2943]
  7. J. Nolen, J.-M. Roquejoffre, L. Ryzhik, A. Zlatos, Existence and non-existence of Fisher-KPP transition fronts, Archive for Rational Mechanics and Analysis, vol. 203 no. 1 (2012), pp. 217-246 [2392], [doi]
  8. I. Matic and J. Nolen, A sublinear variance bound for solutions of a random Hamilton-Jacobi equation, Journal of Statistical Physics, vol. 149 no. 2 (2012), pp. 342-361 [pdf], [doi]
  9. J. Nolen, An invariance principle for random traveling waves in one dimension, SIAM Journal on Mathematical Analysis, vol. 43 no. 1 (2011), pp. 153-188 [pdf], [doi]
  10. P. Cardaliaguet, J. Nolen, P.E. Souganidis, Homogenization and enhancement for the G-equation, Archive for Rational Mechanics and Analysis, vol. 199 no. 2 (2011), pp. 527-561 [4160]
  11. J. Nolen and A. Novikov, Homogenization of the G-equation with incompressible random drift in two dimensions, Communications in Mathematical Sciences, vol. 9 no. 2 (2011), pp. 561-582 [pdf]
  12. J. Nolen, A central limit theorem for pulled fronts in a random medium, Networks and Heterogeneous Media, vol. 6 no. 2 (2011), pp. 167-194 [pdf], [doi]
  13. J. Nolen, J. Xin, and Y. Yu, Bounds on front speeds for inviscid and viscous G-equations, Methods and Applications of Analysis, vol. 16 no. 4 (December, 2009) [pdf]
  14. J. Nolen and J. Xin, Asymptotic Spreading of KPP Reactive Fronts in Incompressible Space-Time Random Flows, Annales de l'institut Henri Poincare -- Analyse Non Lineaire, vol. 26 no. 3 (2009), pp. 815-839 [pdf]
  15. J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium, Annales de l'institut Henri Poincare -- Analyse Non Lineaire, vol. 26 no. 3 (2009), pp. 1021-1047 [pdf]
  16. J. Nolen and G. Papanicolaou, Fine scale uncertainty in parameter estimation for elliptic equations, Inverse Problems, vol. 25 no. 11 (2009) [pdf], [doi]
  17. J. Nolen and J. Xin, KPP Fronts in 1D Random Drift, Discrete and Continuous Dynamical Systems B, vol. 11 no. 2 (2009) [pdf]
  18. A. Mellet, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik, Stability of generalized transition fronts, Comm. PDE, vol. 34 no. 6 (2009), pp. 521-552 [pdf]
  19. J. Nolen and J. Xin, Variational principle and reaction-diffusion front speeds in random flows, ICIAM07-Proceedings (December, 2008), pp. 1040701-1040702
  20. J. Nolen, G. Papanicolaou, O. Pironneau, A Framework for Adaptive Multiscale Methods for Elliptic Problems, SIAM Multiscale Modeling and Simulation, vol. 7 (2008), pp. 171-196, SIAM [pdf]
  21. J. Nolen and J. Xin, Computing reactive front speeds in random flows by variational principle, Physica D, vol. 237 (2008), pp. 3172-3177 [024]
  22. J. Nolen and J. Xin, Variational Principle of KPP Front Speeds in Temporally Random Shear Flows with Applications, Communications in Mathematical Physics, vol. 269 (2007), pp. 493-532 [pdf]
  23. J. Nolen and J. Xin, A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears, Nonlinearity, vol. 18 (2005), pp. 1655-1675 [4]
  24. J. Nolen and J. Xin, Existence of KPP Type Fronts in Space-Time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle, Discrete and Continuous Dynamical Systems, vol. 13 no. 5 (2005), pp. 1217-1234 [pdf]
  25. J. Nolen, M. Rudd, and J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dynamics of PDE, vol. 2 (2005), pp. 1-24 [pdf]
  26. D.M. Boye, T.S. Valdes, J.H. Nolen, A.J. Silversmith, K.S. Brewer, R.E. Anderman, R.S. Meltzer, Transient and persistent spectral hole burning in Eu-doped sol-gel produced SiO2 glass, Journal of Luminescence, vol. 108 (June, 2004), pp. 43-47 [008]
  27. J. Nolen and J. Xin, Min-Max Variational Principles and Fronts Speeds in Random Shear Flows, Methods and Applications of Analysis, vol. 11 no. 4 (2004), pp. 635-644 [pdf]
  28. D.M. Boye, A.J. Silversmith, J. Nolen, L. Rumney, D. Shaye, B.C. Smith, and K.S. Brewer, Red-to-green up-conversion in Er-doped SiO2 and SiO2-TiO2 sol-gel silicate glasses, Journal of Luminescence, vol. 94-95 (December, 2001), pp. 279-282 [S0022-2313(01)00301-5]

Papers Accepted

  1. J. Nolen, J.-M. Roqujoffre, L. Ryzhik, Power-like delay in time inhomogeneous Fisher-KPP equations, Communications in Partial Differential Equations (2014) [pdf]

Papers Submitted

  1. A. Gloria and J. Nolen, A quantitative central limit theorem for the effective conductance on the discrete torus (2014) [5734]
  2. S. Huckemann, E. Miller, J. Mattingly, J. Nolen, Sticky central limit theorems at isolated hyperbolic planar singularities (2014) [6879]
  3. J. Nolen, Normal approximation for the net flux through a random conductor (2014) [2186]
  4. S. Bhamidi, J. Hannig, C. Lee, J. Nolen, The importance sampling technique for understanding rare events in Erdős-Rényi random graphs (2013) [6551]
  5. F. Hamel, J. Nolen, J.-M. Roquejoffre, L. Ryzhik, The logarithmic delay of KPP fronts in a periodic medium (2012) [6173]
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320