Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#339262] of Guillermo Sapiro

Papers Published

  1. Simhal, AK; Gong, B; Trimmer, JS; Weinberg, RJ; Smith, SJ; Sapiro, G; Micheva, KD, A Computational Synaptic Antibody Characterization Tool for Array Tomography., Frontiers in Neuroanatomy, vol. 12 (January, 2018), pp. 51 [doi]
    (last updated on 2019/02/16)

    Application-specific validation of antibodies is a critical prerequisite for their successful use. Here we introduce an automated framework for characterization and screening of antibodies against synaptic molecules for high-resolution immunofluorescence array tomography (AT). The proposed Synaptic Antibody Characterization Tool (SACT) is designed to provide an automatic, robust, flexible, and efficient tool for antibody characterization at scale. SACT automatically detects puncta of immunofluorescence labeling from candidate antibodies and determines whether a punctum belongs to a synapse. The molecular composition and size of the target synapses expected to contain the antigen is determined by the user, based on biological knowledge. Operationally, the presence of a synapse is defined by the colocalization or adjacency of the candidate antibody punctum to one or more reference antibody puncta. The outputs of SACT are automatically computed measurements such as target synapse density and target specificity ratio that reflect the sensitivity and specificity of immunolabeling with a given candidate antibody. These measurements provide an objective way to characterize and compare the performance of different antibodies against the same target, and can be used to objectively select the antibodies best suited for AT and potentially for other immunolabeling applications.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320