Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#335547] of Hau-Tieng Wu

Papers Published

  1. Wu, HT; Wu, JC; Huang, PC; Lin, TY; Wang, TY; Huang, YH; Lo, YL, Phenotype-based and self-learning inter-individual sleep apnea screening with a level IV-like monitoring system, Frontiers in Physiology, vol. 9 no. JUL (July, 2018), FRONTIERS MEDIA SA [doi]
    (last updated on 2019/04/18)

    © 2018 Wu, Wu, Huang, Lin, Wang, Huang and Lo. Purpose: We propose a phenotype-based artificial intelligence system that can self-learn and is accurate for screening purposes and test it on a Level IV-like monitoring system. Methods: Based on the physiological knowledge, we hypothesize that the phenotype information will allow us to find subjects from a well-annotated database that share similar sleep apnea patterns. Therefore, for a new-arriving subject, we can establish a prediction model from the existing database that is adaptive to the subject. We test the proposed algorithm on a database consisting of 62 subjects with the signals recorded from a Level IV-like wearable device measuring the thoracic and abdominal movements and the SpO2. Results: With the leave-one-subject-out cross validation, the accuracy of the proposed algorithm to screen subjects with an apnea-hypopnea index greater or equal to 15 is 93.6%, the positive likelihood ratio is 6.8, and the negative likelihood ratio is 0.03. Conclusion: The results confirm the hypothesis and show that the proposed algorithm has potential to screen patients with SAS.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320