Psychology and Neuroscience Faculty Database
Psychology and Neuroscience
Arts & Sciences
Duke University

 HOME > Arts & Sciences > pn > Faculty    Search Help Login pdf version printable version 

Publications [#251234] of Avshalom Caspi

search PubMed.

Journal Articles

  1. Wong, CCY; Caspi, A; Williams, B; Houts, R; Craig, IW; Mill, J (2011). A longitudinal twin study of skewed X chromosome-inactivation.. PloS one, 6(3), e17873. [21445353], [doi]
    (last updated on 2018/04/23)

    Abstract:
    X-chromosome inactivation (XCI) is a pivotal epigenetic mechanism involved in the dosage compensation of X-linked genes between males and females. In any given cell, the process of XCI in early female development is thought to be random across alleles and clonally maintained once established. Recent studies, however, suggest that XCI might not always be random and that skewed inactivation may become more prevalent with age. The factors influencing such XCI skewing and its changes over time are largely unknown. To elucidate the influence of stochastic, heritable and environmental factors in longitudinal changes in XCI, we examined X inactivation profiles in a sample of monozygotic (MZ) (nā€Š=ā€Š23) and dizygotic (DZ) (nā€Š=ā€Š22) female twin-pairs at ages 5 and 10 years. Compared to MZ twins who were highly concordant for allelic XCI ratios, DZ twins showed much lower levels of concordance. Whilst XCI patterns were moderately stable between ages 5 and 10 years, there was some drift over time with an increased prevalence of more extreme XCI skewing at age 10. To our knowledge, this study represents the earliest longitudinal assessment of skewed XCI patterns, and suggests that skewed XCI may already be established in early childhood. Our data also suggest a link between MZ twinning and the establishment of allelic XCI ratios, and demonstrate that acquired skewing in XCI after establishment is primarily mediated by stochastic mechanisms. These data have implications for our understanding about sex differences in complex disease, and the potential causes of phenotypic discordance between MZ female twins.


Duke University * Arts & Sciences * Faculty * Staff * Grad * Postdocs * Reload * Login