Psychology and Neuroscience Faculty Database
Psychology and Neuroscience
Arts & Sciences
Duke University

 HOME > Arts & Sciences > pn > Faculty    Search Help Login pdf version printable version 

Publications [#274350] of Edward D. Levin

search .

Papers Published

  1. Levin, ED; Blackwelder, WP; Glasgow, HB; Burkholder, JM; Moeller, PDR; Ramsdell, JS (2003). Learning impairment caused by a toxin produced by Pfiesteria piscicida infused into the hippocampus of rats.. Neurotoxicology and Teratology, 25(4), 419-426. [12798959], [doi]
    (last updated on 2019/12/09)

    Abstract:
    Pfiesteria piscicida, an estuarine dinoflagellate, which has been shown to kill fish, has also been associated with neurocognitive deficits in humans. With a rat model, we have demonstrated the cause-and-effect relationship between Pfiesteria exposure and learning impairment. In several studies, we have replicated the finding in Sprague-Dawley rats that exposure to fixed acute doses of Pfiesteria cells or filtrates caused radial-arm maze learning impairment. Recently, this finding of Pfiesteria-induced learning impairment in rats has been independently replicated in another laboratory as well. We have demonstrated significant Pfiesteria-induced learning impairment in both the win-shift and repeated-acquisition tasks in the radial-arm maze and in reversal learning in a visual operant signal detection task. These learning impairments have been seen as long as 10 weeks after a single acute exposure to Pfiesteria. In the current study, we used a hydrophilic toxin isolated from clonal P. piscicida cultures (PfTx) and tested its effect when applied locally to the ventral hippocampus on repeated acquisition of rats in the radial-arm maze. Toxin exposure impaired choice accuracy in the radial-arm maze repeated acquisition procedure. The PfTx-induced impairment was seen at the beginning of the session and the early learning deficit was persistent across 6 weeks of testing after a single administration of the toxin. Eventually, with enough practice, in each session, the PfTx-exposed rats did learn that session's problem as did control rats. This model has demonstrated the cause-and-effect relationship between exposure to a hydrophilic toxin produced by P. piscicida and learning impairment, and specifically that the ventral hippocampus was critically involved.


Duke University * Arts & Sciences * Faculty * Staff * Grad * Postdocs * Reload * Login