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1 Motivation and Background

The notion of geodesics on a surface was first introduced by Johann Bernoulli,
who defined it as the curve of minimal length on the surfaces between any
two of its points. The local theory of geodesics was well understood due to
the work of geometers on surfaces in the nineteenth century (Gauss, Jacobi,
Bonnet), and later on Riemannian manifolds (Riemann, Christoffel, Levi-
Civita). For the global aspects of geodesics on a Riemannian manifold M
of dimension n, there are two main problems: (1) Does an arc of a geodesics
with end points p, q actually minimize length among all smooth curves joining
p and q? (2) How many geodesic arcs are there joining any two points of M?
Locally, these two problems have complete answers: each point of M has
an open neighborhood U such that for any distinct points p, q in U there
is a unique arc of geodesic contained in U joining p and q, and it is unique
minimal geodesic between p and q.
Until 1920, the only general results on the global problems came from Jacobi’s
work on problem (1). He had shown that on a geodesic γ with starting point
x0, there exists in general a sequence of points x1, x2, · · · , known as the
conjugate points of x0

1, such that any arc C of γ that does not contain any
of the x′js for j ≥ 1 is a minimal geodesic arc; but if C does contain any xj,
say p and q are the endpoints of C, then in every neighborhood of γ, there
exist piecewise smooth arcs joining p and q with length strictly smaller than

∗This is a talk I gave at the Morse Theory Seminar, Fall 2011, Duke
1The problem of finding those conjugate points explicitly on a general Riemannian

manifold is still open today.
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the length of C. In other words, γ will stay minimizing until it reaches a
conjugate point; and once it passes through a conjugate point, it will again
be minimizing until it reaches the next conjugate point. The sphere with
conjugate points the north pole and the south pole is a very good example
to illustrate this.
Beginning in 1928, Marston Morse published a series of papers attacking
this problem by a bold combination of differential geometry and algebraic
topology applied to suitable function spaces, developing a technique he called
“calculus of variation in the large”. Given a Riemannian manifold (M, g), and
two points p and q on M , he considered the space of all piecewise smooth
paths on M joining p and q: Ω(M ; p, q) = Ω. If γ ∈ Ω(M ; p, q), we can
always reparametrize so that γ is defined on [0, 1], and there exists a partition
of [0, 1] : 0 = t0 < t1 < · · · < tk = 1 such that γ|[ti,ti+1] is smooth for
i = 0, · · · , k− 1. Morse then considered real-valued function F defined on Ω
and studied the critical points of F , and tried to related that with the global
problem of geodesics. For example, we can let F be the energy functional E.
The energy E of γ ∈ Ω(M ; p, q) from a to b where 0 ≤ a < b ≤ 1 is defined
to be:

Eb
a(γ) :=

∫ b

a

〈dγ
dt
,
dγ

dt
〉gdt.

We will make two conventions: (1) We let E(γ) to denote E1
0(γ); (2) We

will drop the metric g whenever it is clear that with respect to which metric
the inner product is taken. Another example is to take F to be the length
functional defined in a similar manner as

Lba(γ) :=

∫ b

a

√
〈dγ
dt
,
dγ

dt
〉 dt.

The remarkable contribution of Morse which was the essence of his theory was
that it is possible to give Ω a differentiable structure so that it is meaningful
to talk about smooth functions on Ω and their critical points, hence his
general results on critical points could be applied. The presentation that
we are studying today was simplified by Bott, and was further simplified by
Milnor.
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2 Step I: First Variation of Energy

Applying Schwarz’s inequality
(∫ b

a
fgdt

)2
≤
(∫ b

a
f 2dt

)(∫ b
a
g2dt

)
with f(t) =

1 and g(t) =
√
〈dγ
dt
, dγ
dt
〉, we see that

(Lba)
2 ≤ (b− a)Eb

a,

where equality holds if and only if g is constant; that is if and only if γ is
parametrized proportional to arc length. Now suppose there is a minimal
geodesic γ̃ from p to q, then we have

E(γ̃) = L(γ̃)2 ≤ L(γ)2 ≤ E(γ).

Note that L(γ̃) = L(γ) if and only if γ is also a minimal geodesic, possi-
bly reparametrized. On the other hand L(γ)2 = E(γ) if and only if γ is
parametrized proportional to arc length. Therefore E(γ̃) < E(γ) unless γ
is also a minimal geodesic. Suppose M is complete, then any two points
p, q can be joined by a minimal geodesic. Therefore the energy functional
E : Ω −→ R achieves its minima precisely on the set of minimal geodesics
from p to q. Now we have two questions: (1) How can we detect those mini-
mal geodesics using E? (2) Can we at least detect the geodesics from p to q
using E?

Definition 1. Given a path γ ∈ Ω(M ; p, q), an end point fixed variation α of
γ is a continuous map α : (−ε, ε)× [0, 1] −→M with the following properties:
(1) α(0, t) = γ(t),
(2) α(u, 0) = p, α(u, 1) = q for all −ε < u < ε, and
(3) there is a partition of [0, 1] : 0 = t0 < t1 < · · · < tk = 1 such that α is
smooth on each (−ε, ε)× [ti, ti+1], i = 0, · · · , k − 1.

A variational vector field t 7→ W (t) is associated to each variation α,
where W (t) is a tangent vector in the tangent space Tγ(t)M , defined as

W (t) :=
∂α

∂u
(0, t).

W (t) is a continuous map from [0, 1] into the tangent bundle TM , and is
smooth in each [ti, ti+1], for i = 0, · · · , k − 1. All these piecewise smooth
vector fields along γ vanishing at end points form a vector space, TΩ(γ),
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which can be naturally thought as the tangent space of Ω(M ; p, q) at the
path γ. This is an infinite dimensional vector space. Conversely, given a
piecewise smooth vector field along γ, we can realize it as the variational
vector field of some variation α, using exponential maps. Therefore there is
a one-to-one correspondence:

{tangent vectors in TΩ(γ)} ←→ {variational vector fields along γ}

More generally, one can replace (−ε, ε) in the above definition with a neigh-
borhood of 0 in some Rn, defining an n-parameter variation. We can also
talk about a variation without end points fixed, and the discussions below
follow with possible slight modifications to take care of the end points.
Let F : Ω −→ R be a real-valued function. We wish to define a map

F∗|γ : TΩ(γ) −→ TF (γ)R.

How do we define F∗? Naively, we could pick a curve in Ω that starts at γ,
which is exactly a variation α of γ, then pick a tangent vector of that curve,
which corresponds to the variational vector field W (t). Thus we would like
to define

F∗|γ(W (t)) := F∗|γ(
∂α

∂u
(0, t)) =

d

du
|u=0

(
F ◦ α (u, t)

)
.

We will not discuss the conditions that F must satisfy in order for F ◦ α to
be differentiable, we only indicate how F∗ could be defined to motivate the
notion of critical points of F .

Definition 2. A path γ0 is a critical path or a critical point of the functional
F if and only if d

du
|u=0(F (α(u, t))) = 0 for every variation α of γ0.

Example 1. Suppose F achieves a minimum at a path γ0 ∈ Ω, and if the
derivatives d

du
F (α(u, t)) are all defined, then γ0 is a critical point of F .

Suppose M is a complete manifold. If F is the energy functional E we
talked about earlier, then from the above we know that the minima of E
on Ω are precisely the minimizing geodesics joining p to q. Therefore every
minimal geodesic in Ω(M ; p, q) is a critical point of E. The question is: are
critical points of E also minimal geodesics? If so, then this will give us an
answer to the previously raised questions about using E to detect minimal
geodesics. It turns out that this is a bit too much to ask for.
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Theorem 1 (First Variation Formula). Let γ : [0, 1] −→ M be a path in
Ω(M ; p, q), and let α : (−ε, ε) × [0, 1] −→ M be a end points fixed variation
of γ. Let W (t) denote the variational vector field, and V (t) = dγ

dt
(t) be the

velocity vector field along γ. Let A(t) := ∇ ∂
∂t
V (t) be vector field along γ that

is the covariant derivative of V (t). Finally, let ∆tV = V (t+)− V (t−) be the
discontinuity in the velocity vector at t where 0 < t < 1. Then we have

1

2

d

du
|u=0E(α(u, t)) = −

∑
t

〈W (t),∆tV 〉 −
∫ 1

0

〈W (t), A(t)〉dt.

Proof. Choose 0 = t0 < t1 < · · · < tk = 1 so that α is differentiable on each
(−ε, ε)× [ti−1, ti], i = 1, · · · , k. By metric compatibilitiy, we have

∂

∂u
〈∂α
∂t
,
∂α

∂t
〉 = 2〈∇ ∂

∂u

∂α

∂t
,
∂α

∂t
〉.

Therefore

1

2

d

du
E(α(u, t)) =

1

2

d

du

∫ 1

0

〈∂α
∂t
,
∂α

∂t
〉dt

=

∫ 1

0

〈∇ ∂
∂u

∂α

∂t
,
∂α

∂t
〉dt

=

∫ 1

0

〈∇ ∂
∂t

∂α

∂u
,
∂α

∂t
〉dt

=

∫ 1

0

(
∂

∂t
〈∂α
∂u
,
∂α

∂t
〉 − 〈∂α

∂u
,∇ ∂

∂t

∂α

∂t
〉
)
dt

=
k∑
i=1

∫ ti

ti−1

(
∂

∂t
〈∂α
∂u
,
∂α

∂t
〉 − 〈∂α

∂u
,∇ ∂

∂t

∂α

∂t
〉
)
dt

=
k∑
i=1

〈∂α
∂u
,
∂α

∂t
〉|t

−
i

t+i−1

−
k∑
i=1

∫ ti

ti−1

〈∂α
∂u
,∇ ∂

∂t

∂α

∂t
〉dt

= −
k−1∑
i=1

〈∂α
∂u

(ti),∆ti

∂α

∂t
〉 −

∫ 1

0

〈∂α
∂u
,∇ ∂

∂t

∂α

∂t
〉dt

Setting u = 0, we have the desired formula.
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Intuitively, in order to decrease energy, we should vary the path γ in the
direction of decreasing “kink” (see diagram below); and in the direction of
the acceleration vector A(t).

Figure 1: Picture Taken from Milnor’s Book [2]

Corollary 2. A path γ0 is a critical point for E if and only if γ0 is a geodesic.

Proof. Suppose γ0 is a geodesic joining p to q, then it is smooth on [0, 1] with
zero acceleration. Hence for any variation α of γ0, we have ∆tV = 0 and
A(t) = 0, thus the first variation formula implies that γ0 is a critical point.
Conversely, suppose γ0 is a critical point. Let α be the variation of γ0 with
variational vector field W (t) := f(t)A(t), where f(t) is a positive function
except that it vanishes that the t′is. Then

0 =
1

2

d

du
|u=0E(α(u, t)) = −

∫ 1

0

f(t)〈W (t),W (t)〉dt.

This is zero if and only if A(t) = 0 for all t. Hence each γ0|[ti,ti+1] is a geodesic.
Now let α be a variation such that W (ti) = ∆tiV . Then

0 =
1

2

d

du
|u=0 = −

∑
t

〈∆tiV,∆tiV 〉.
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Hence all ∆tiV (t) = 0, and γ0 is thus C1, even at the points ti. Now it follows
from the uniqueness theorem for differential equations that γ0 is in fact C∞

everywhere.

Thus by computing the critical points of the energy functional, we are
able to find all the geodesics joining p and q. But this tells us nothing about
the minimizing property of those geodesics. From calculus we know that if
we are to find the minimum of some function, computing the first derivative
can only tell us the critical points, and in order to determine minimality, we
need to take the second derivative. This is the second step.
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