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1 Introduction: What is a CMC Surface

In this talk we will introduce a special type of surfaces called constant mean curva-
ture (CMC) surfaces. This notion generalizes to any submanifolds with codimension
1 (called hypersurfaces), but we will first focus on 2-dimensional surfaces in the Eu-
clidean space R3. This talk is mostly based on a series of lectures given by Lan-Hsuan
Huang at the MSRI summer school (which the author attended) in 2012.
Let Σ2 be a smooth surface in R3. For a point p ∈ Σ, consider all the curves in Σ
passing through p. Now let κ1 and κ2 be the maximum and minimum curvature of
such curves, respectively. Define H := κ1 + κ2. We can do this at every point, and
thus we get a function H : Σ −→ R, called the mean curvature of Σ. Thus Σ is called
a constant mean curvature (CMC) surface if this function H ≡ constant.

Example 1.1 (Helicoid). Let a and b be two constants, then consider the following
parametrized surface:

ϕ(u, v) = (u cos v, u sin v, av + b), (u, v) ∈ R2. (1.1)

This surface is called a Helicoid (see figure 1), and is obtained by tracing out a line
rotationally and vertically. It turns out that the mean curvature H is identically 0 in
this case, which make a Helicoid a special case of a CMC surface, called a minimal
surface.

Example 1.2 (Cylinder). Let Σ be a cylinder with radius r (see figure 2). For any
point p on Σ, we see that κ1 = 1

r
and κ2 = 0 at p, thus H ≡ 1

r
. In particular, H is

constant. Thus a cylinder is a CMC surface.

Example 1.3 (Sphere). Let Σ be a round sphere S2
r with radius r in R3 (see figure

3). Then κ1 = κ2 = 1
r
, thus H ≡ 2

r
. Therefore S2

r is a CMC surface for each r fixed.
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Figure 1: Helicoid, Picture taken from Wikipedia, http://commons.wikimedia.org/

wiki/File:Helicoid.PNG

Figure 2: Cylinder, Picture taken from Wikipedia, http://upload.wikimedia.

org/wikipedia/commons/thumb/3/36/Circular_cylinder_rh.svg/200px-Circular_

cylinder_rh.svg.png

Figure 3: Sphere, Picture taken from Wikipedia, http://upload.wikimedia.org/

wikipedia/commons/thumb/7/7e/Sphere_wireframe_10deg_6r.svg/200px-Sphere_

wireframe_10deg_6r.svg.png
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Now we briefly go over the history of studies of CMC surface ([6]):

1. 1841, Delaunay proved: the only CMC surfaces of revolution (rotation of a curve
around an axis) are the plane, cylinder, sphere, catenoid, unduloid and nodoid.

2. 1853, A. D. Alexandrov proved: a compact embedded surface in R3 with constant
non-zero mean curvature is a two sphere.

3. 1956, H. Hopf conjectured: any compact orientable immersed CMC hypersurface
in Rn must be a round n− 1 sphere.

4. 1982, Wu-Yi Hsiang constructed a counterexample in R4, disproving Hopf’s con-
jecture.

5. 1984, Wente proved: there exists a CMC immersion of the 2 torus in R3.

6. 1984, Barbosa and do Carmo proved: any compact orientable immersed hyper-
surface in Rn that is stable and has constant non-zero mean curvature must be a
round n− 1 sphere.

7. 1996, Rugang Ye proved: In a strongly asymptotically flat manifold, there exists
a surface near infinity that has prescribed constant mean curvature.

In this talk, we are interested in surfaces in an asymptotically flat manifold, which
will be defined later. We first define mean curvature and related geometric quantities
in general dimensions.

2 General CMC Hypersurfaces and Properties

Let (Mn, g) be a Riemannian manifold of dimension n, and let Σn−1 be a closed
(compact without boundary) hypersurface with the induced metric. Let ∇ be the
Levi-Civita connection on M . Pick a point p ∈ Σ, let ν be a local normal vector
field on Σ around p, then given any local tangent vector fields X and Y around p, we
define

II(X, Y )(p) := 〈∇XY, ν〉(p). (2.1)

We thus get a globally defined symmetric (0, 2)-tensor A called the second fundamen-
tal form. Now the mean curvature of Σ is defined to be

H := trgII. (2.2)

Thus Σ is called CMC if its mean curvature H ≡ constant. We shall distinguish
two types of CMC hypersurface: if H ≡ 0, then Σ is called a minimal hypersurface;
otherwise we refer to Σ as a non-zero CMC hypersurface. Where do CMC hypersur-
faces naturally come from? Roughly speaking, CMC hypersurfaces arise as critical
points of variations of certain geometric quantities. Consider a variation of Σ along
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its normal direction ν in M with speed η ∈ C∞(M). More precisely, we consider the
following function:

F : Σ× (−δ, δ) −→M, δ > 0, (2.3)

such that for x ∈ Σt := F (Σ, t), and −δ < t < δ,{
∂
∂t
F (x, t) = η(x, t)ν(x, t),

F (Σ, 0) = Σ,
(2.4)

where ν(x, t) is the outward-pointing unit normal vector field along Σt.

Figure 4: Variation of Σ along normal direction

Now let gt be the induced metric on Σt, and dσt, IIt and Ht be the associated
(n − 1)-volume form, the second fundamental form and the mean curvature of Σt,
respectively. We let

At :=

∫
Σt

dσt(x) (2.5)

be the ”area”, or the (n−1)-volume of Σt, and let Vt be the n-volume inclosed by Σt,
−δ < t < δ. We recall the following variation formulas (computations given in the
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appendix A):

d

dt
dσt(x) = Ht(x)η(x, t)dσt(x) (2.6)

d

dt
Ht(x) = −∆Σtη(x, t)−

(
||IIt||2 + Ricgtν(x, t), ν(x, t)

)
η(x, t) =: LΣtη(x, t) (2.7)

d

dt
At =

∫
Σt

d

dt
dσt(x) =

∫
Σt

Ht(x)η(x, t) dσt(x) (2.8)

d2

dt2
At =

∫
Σt

(
d

dt
Ht(x)

)
η(x, t) dσt(x) +Ht(x)

(
d

dt
η(x, t)

)
dσt(x) +Ht(x)η(x, t)

d

dt
dσt(x)

=

∫
Σt

η(x, t)LΣtη(x, t) dσt(x) +Ht(x)

(
d

dt
η(x, t)

)
dσt(x) +H2

t (x)η(x, t)2 dσt(x)

(2.9)

d

dt
Vt =

∫
Σt

η(x, t) dσt(x) (2.10)

d2

dt2
Vt =

∫
Σt

(
d

dt
η(x, t)

)
dσt(x) +Ht(x)η(x, t)2 dσt(x) (2.11)

From equation 2.8, we have

Theorem 2.1. Σ is a critical point of the area functional At with respect to all
variations η if and only if HΣ ≡ 0, i.e., Σ is a minimal hypersurface.

With a slight abuse of terminology, minimal hypersurfaces need not minimize area
even locally. From calculus we know that we still need to check the second derivative.
Now if Σ is a minimal hypersurface, then equation 2.8 implies that through a normal
variation η(x, t)ν(x, t):

d2

dt2

∣∣∣
t=0
At =

∫
Σ

η(x)LΣη(x) dσ(x). (2.12)

Therefore if

∫
Σ

η(x)LΣη(x) dσ(x) ≥ 0 for all variations η, then Σ locally minimizes

area A among all nearby hypersurfaces. This observation gives rise to the following
definition:

Definition 2.1. A minimal hypersurface Σ is called stable if∫
Σ

η(x)LΣη(x) dσ(x) ≥ 0 for all variations η. (2.13)

A non-zero CMC hypersurface Σ is called stable if∫
Σ

η(x)LΣη(x) dσ(x) ≥ 0, for all variations η with

∫
Σ

η(x) dσ(x) = 0. (2.14)

We thus call LΣ the stability operator.
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We have shown:

Theorem 2.2. A stable minimal hypersurface locally minimizes area among all nearby
hypersurfaces.

Now a natural question is: do stable non-zero CMC hypersurfaces locally minimize
area as well? It turns out this is true for volume-preserving variations:

Theorem 2.3. Suppose Σ is a stable non-zero CMC hypersurface. Consider all vari-

ations η such that

∫
Σ

η(x)dV (x) = 0, and all Σt enclose the same n-volume, i.e., a

volume preserving normal variation. Then Σ minimizes area among all such varia-
tional hypersurfaces.

Proof. First note that if Σ is a non-zero CMC hypersurface, then Σ is a critical point

of the area functional with respect to all variations with

∫
Σ

η(x)dσ(x) = 0. To see

this, we use equation 2.8:

d

dt

∣∣∣
t=0
At =

∫
Σ

H(x)η(x) dσ(x) = H

∫
Σ

η(x) dσ(x) = 0. (2.15)

Since the variation is also volume preserving, by equation 2.11 we have:

0 =
d2

dt2
Vt =

∫
Σ

(
d

dt
η(x, t)

)
dσt(x) +Ht(x)η(x, t)2 dσt(x) (2.16)

since η(x) has zero average on Σ, and H is constant. Thus the second variation of
area (equation 2.9) becomes:

d2

dt2

∣∣∣
t=0
At =

∫
Σ

η(x)LΣη(x) dσ(x) +H

(
d

dt

∣∣∣
t=0
η(x, t)

)
dσ(x) +H2η(x)2 dσ(x)

=

∫
Σ

η(x)LΣη(x) dσ(x) +H
d2

dt2
Vt (Since H is constant)

=

∫
Σ

η(x)LΣη(x) dσ(x) (η is volume preserving)

≥ 0 (by stability of Σ)

Therefore Σ locally minimizes area among nearby Σt hypersurfaces described as above.

3 Examples of CMC hypersurfaces in Asymptoti-

cally Flat Manifolds

We are interested in finding stable CMC hypersurfaces. It turns out that stability of
hypersurfaces is related to the eigenvalues of the stability operator. Suppose λ is an
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eigenvalue of LΣ with eigenfunction η, then∫
Σ

ηLΣη dV = λ

∫
Σ

η2 dV. (3.1)

Thus if the smallest eigenvalue of Lσ is non-negative, then the above is non-negative
as well. Let’s see some examples.

Example 3.1 (Sphere revisited). Let (M, g) be Euclidean space (Rn, δ), and the
hypersurface Σ be the standard round n sphere Sn−1

R (0) of radius R centered at 0.
The stability operator is then

LSn−1
R

= −∆Sn−1
R
− n− 1

R2
. (3.2)

Notice that LSn−1 and −∆Sn−1
R

have the same set of eigenfunctions. Constant func-

tions are eigenfunctions of LSn−1
R

with eigenvalues λ0 = −n−1
R2 . λ1 = 0 is an eigenvalue

with eigenspace spanned by the coordinate functions {x1
R
, x

2

R
, · · · , xn

R
}. They corre-

sponds to translational variations. In particular, Sn−1
R is not stable: translation of

Sn−1
R will enclose the same volume.

Example 3.2 (Sphere in Schwarzschild). We now consider a 3-dimensional ambient

manifold:

(
R3\Bm

2
, g =

(
1 + m

2|x|

)4

δ

)
, called the Schwarzschild manifold (see figure

5), where m > 0 is a constant and Bm
2

is the open ball with radius m
2

. Thus the
Schwarzschild manifold is a one-parameter family of manifolds.

Figure 5: Schwarzschild manifold with one dimension suppressed. The boundary
curve is the sphere of radius m

2
. Picture courtesy of Jeffrey L. Jauregui, University of

Pennsylvania

The Schwarzschild metric is conformal to the Euclidean metric, thus intuitively,
as |x| → ∞, the metric becomes flat. This is a special case of what is called an
asymptotically flat manifold, which we will discuss later. Now let SR be the 2 sphere in
Schwarzschild with radius R and the induced metric. By the conformal transformation
of mean curvature formula, the mean curvature of SR is:

HR =
(

2− m

R

) u(R)−3

R
, (3.3)
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where u(|x|) := 1 + m
2R

. Therefore each such sphere SR is a CMC surface. In par-
ticular, Sm

2
is a minimal surface. Notice that lim

R→∞
HR = 0, there must exist a local

maximum in between Sm
2

and S∞. Calculation shows that the sphere S (2+
√
3)m

2

has the

largest mean curvature. Moreover, HR is increasing for m
2
≤ R ≤ (2+

√
3)m

2
, and HR

is decreasing for R ≥ (2+
√

3)m
2

(see figure 6).

Figure 6: Foliations of CMC Spheres in Schwarzschild manifold

The question is: are those spheres stable? To answer this, we compute the stability
operator for SR as

LSR
= −u−4R−2∆S2 +

−4R2 + 8Rm−m2

2R4u6
, (3.4)

where ∆S2 is the Laplacian of the standard round unit sphere. The constant functions
are eigenfunctions of LSR

with eigenvalue λ0 = −4R2+8Rm−m2

2R4u6
, but those do not have

zero average on SR. The next smallest eigenvalue has multiplicity three: λ1 = λ2 =
λ3 = 6m

R3u6
such that the eigenspace is spanned by coordinate functions {x1, x2, x3},

which have zero average on Σ. Therefore SR is stable for all R ≥ m
2

, and they foliate
the entire Schwarzschild manifold, as indicated by Figure 6.

Both Rn and the Schwarzschild manifold are examples of an asymptotically flat
manifolds:

Definition 3.1. A complete Riemannian manifold (Mn, g) of dimension n is asymp-
totically flat if there exists a compact subset K ⊂M and a diffeomorphism

Φ : Mn\K −→ Rn\B1, (3.5)

8



which gives rise to a natural coordinate chart for M\K. Moreover, we require that in
this coordinate chart, the metric g and the scalar curvature R satisfies the following
decay conditions:

1. gij(x) = δij +O(|x|−p);

2. |x||gij,k(x)|+ |x|2|gij,kl(x)| = O(|x|−p);

3. |R(x) = O(|x|−q),

for all i, j, k, l and x, where p > n−2
2

, and q > n.

An important question is: does there exists a foliation of stable CMC surfaces in
asymptotically flat manifolds, just as in Schwarzschild? The existence of such foliation
would allow us to define natural geometric coordinate systems on the manifold, much
like the polar coordinate system. Rugang Ye [5] and Lan-Hsuan Huang [3] used a
perturbation argument and proved such existence with some additional assumption
(e.g., strongly asymptotically flatness and Regge-Teitelboin condition). The idea is
that an asymptotically flat manifold approaches the flat Euclidean space at infinity,
thus the spheres in such manifolds should approach to spheres in Euclidean space
which are CMC. Therefore for a large sphere near infinity, one might be able to find
a CMC surface nearby.

A Variation Formulas

A.1 First Variation of Area

Let Σn−1 be an embedded closed (compact without boundary) hypersurface in a
Riemannian manifold (Mn, g,∇). Endow Σ with the induced metric. We consider a
variation of Σ as follows:

F : Σ× (−δ, δ) −→M, δ > 0, (A.1)

such that for all x ∈ Σt := F (Σ, t), and t ∈ (−δ, δ),

∂

∂t
F (x, t) = η(x, t)ν(x, t), (A.2)

where η is a smooth function η ∈ C∞(Σ × (−δ, δ)), and ν(x, t) is the unit outward
normal vector to Σt at (x, t). Let gt be the induced metric on Σt, and let ∇t be the
associated Levi-Civita connection. Let dσt be the corresponding (n− 1)-volume form
on Σt, andAt the (n−1)-volume. Let Vt be the n-volume enclosed by Σt. We shall refer
to At as the area of Σt, and Vt the volume, in analogy to the case where Σt are surfaces
in a 3-dimensional manifold. Let IIt and Ht := trgtII be the second fundamental form
and the mean curvature of Σ with respect to ν(x, t) respectively. We first compute the
variation of dσt. Let {U ;x1, x2, · · · , xn−1} be a local coordinate chart of Σ, then Σt can

9



be locally parametrized as {x1, x2, · · · , xn−1, t} with each fixed t. Let gt = (gt)ijdx
idxj

be the local representation of the metric on Σt, i, j = 1, 2, · · · , n− 1.

∂

∂t
dσt =

∂

∂t

√
det(gt)dx

1 ∧ dx2 · · · ∧ dxn−1

=
1

2

1√
det(gt)

det(gt) · trace

(
g−1
t

∂

∂t
gt

)
dx1 ∧ dx2 ∧ · · · ∧ dxn−1 (A.3)

=
1

2

√
det(gt)trace

(
g−1
t

∂

∂t
gt

)
dx1 ∧ dx2 ∧ · · · ∧ dxn−1

where equation (A.3) follows from the identity

d

dt
det(A) = det(A)trace

(
A−1 d

dt
A

)
, (A.4)

for any square matrix A with entries functions of t. Now

∂

∂t
(gt)ij =

∂

∂t
〈 ∂
∂xi

,
∂

∂xj
〉 = 〈∇ ∂

∂t

∂

∂xi
,
∂

∂xj
〉+ 〈 ∂

∂xi
,∇ ∂

∂t

∂

∂xj
〉

= 〈∇ ∂

∂xi

∂

∂t
,
∂

∂xj
〉+ 〈 ∂

∂xi
,∇ ∂

∂xj

∂

∂t
〉 (∇ is torsion free)

= 〈∇ ∂

∂xi
ην,

∂

∂xj
〉+ 〈 ∂

∂xi
,∇ ∂

∂xj
ην〉

= 2ηIIt

(
∂

∂xi
,
∂

∂xj

)
. (A.5)

Now plug (A.5) into (A.3):

∂

∂t
dσt =

1

2

√
det(gt)trace

(
g−1
t · 2η · IIt(

∂

∂xi
,
∂

∂xj
)

)
dx1 ∧ dx2 ∧ · · · ∧ dxn−1 = Htηdσt

(A.6)
Therefore

∂

∂t
At =

∫
Σt

∂

∂t
dσt =

∫
Σt

Ht(x)η(x, t) dσt(x). (A.7)

A.2 Second Variation of Area

Now we compute the first variation of mean curvature Ht, which gives rise to the
second derivative of area. Recall that Ht = gijt (IIt)ij in local coordinates, i, j =
1, 2, · · · , n− 1. Thus

∂

∂t
Ht =

∂

∂t
gijt (IIt)ij + gijt

∂

∂t
(IIt)ij (A.8)

Since 0 = ∂
∂t

(gtg
−1
t ) = ( ∂

∂t
gt)g

−1
t + gt(

∂
∂t
g−1
t ), we have ∂

∂t
g−1
t = −g−1

t ( ∂
∂t
gt)g

−1
t . Thus

the first term in the above becomes

∂

∂t
gijt (IIt)ij = −gikt

(
∂

∂t
(gt)kl

)
gljt (IIt)ij = −gikt 2η(IIt)klg

lj
t (IIt)ij = −2η||IIt||2 (A.9)
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We now compute the derivative of the second fundamental form.

∂

∂t
(IIt)ij =

∂

∂t
〈∇ ∂

∂xi
ν,

∂

∂xj
〉

= 〈∇ ∂
∂t
∇ ∂

∂xi
ν,

∂

∂xj
〉+ 〈∇ ∂

∂xi
ν,∇ ∂

∂t

∂

∂xj
〉

= 〈∇ ∂

∂xi
∇ ∂

∂t
ν,

∂

∂xj
〉+ 〈(∇ ∂

∂t
∇ ∂

∂xi
−∇ ∂

∂xi
∇ ∂

∂t
−∇[ ∂

∂xi
, ∂
∂t

])ν,
∂

∂xj
〉+ 〈∇ ∂

∂xi
ν,∇ ∂

∂t

∂

∂xj
〉

= 〈∇ ∂

∂xi
∇ ∂

∂t
ν,

∂

∂xj
〉+ 〈Rg(

∂

∂t
,
∂

∂xi
)ν,

∂

∂xj
〉+ 〈∇ ∂

∂xi
ν,∇ ∂

∂xj

∂

∂t
〉

= 〈∇ ∂

∂xi
(−∇Σtη) ,

∂

∂xj
〉+ η〈R(ν,

∂

∂xi
)ν,

∂

∂xj
〉+ η〈∇ ∂

∂xi
ν,∇ ∂

∂xj
ν〉

where we have used two lemmas, which will be proved below:

Lemma 1. ∇ ∂

∂xi
ν is tangential, i.e., 〈∇ ∂

∂xi
ν, ν〉 = 0.

Lemma 2. ∇ ∂
∂t
ν = −∇Σtη, where ∇Σt is the surface gradient on Σt.

Therefore

gijt
∂

∂t
(IIt)ij = −∆Σtη − ηg

ij
t 〈R(ν,

∂

∂xi
),

∂

∂xj
, ν〉+ η||IIt||2

= −∆Σtη − ηgij〈R(ν,
∂

∂xi
),

∂

∂xj
, ν〉+ η||IIt||2 (ambient metric g trace)

= −∆Σtη − ηRicg(ν, ν) + η||IIt||2.

where we used

Lemma 3. gijt 〈∇ ∂

∂xi
(∇Σtη) , ∂

∂xj
〉 = ∆Σtη.

and

Lemma 4. gijt 〈∇ ∂

∂xi
ν,∇ ∂

∂xj
ν〉 = ||IIt||2.

Combining above, we get

∂

∂t
Ht = −∆Σtη − η

(
Ricg(ν, ν) + ||IIt||2

)
=: LΣtη, (A.10)

where LΣt is called the stability operator of Σt. The second variation of area is then
given by:

∂

∂t
At =

∫
Σ

η(x, t)(LΣtη)(x, t) dσt(x) +Ht(x)

(
∂

∂t
η(x, t)

)
dσt(x) +H2

t η(x, t)2 dσt(x).

(A.11)
Now we verity the above lemmas.
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Proof of Lemma 1. Since ν is the unit outward normal vector field, we have

0 =
∂

∂xi
〈ν, ν〉 = 2〈∇ ∂

∂xi
ν, ν〉. (A.12)

Thus ∇ ∂

∂xi
ν is tangential. Similarly, ∇ ∂

∂t
ν is also tangential.

Proof of Lemma 2. Recall that the surface gradient is defined as

∇Σtν := ∇ν − 〈∇ν, ν〉ν, (A.13)

that is, the tangential component of the gradient with respect to the ambient metric.
For any point p ∈ Σt, choose geodesic normal coordinates {U ; e1, e2, · · · , en} around
p such that e1, e2, · · · , en−1 span TpΣt, and en = ν. Since ∇eiν is tangential, it suffices
to show that 〈∇ ∂

∂t
ν, ei〉(p) = 〈−∇Σtη, ei〉(p), for i = 1, 2, · · · , n− 1. Indeed:

〈∇ ∂
∂t
ν, ei〉(p) = −〈ν,∇ ∂

∂t
ei〉(p) = −〈ν,∇ei

∂

∂t
〉(p) (∇ is torsion free)

= −ei(η)〈ν, ν〉(p)− η〈ν,∇eiν〉(p)
= −ei(η)(p) (∇eiν is tangential)

= −〈
n−1∑
j=1

ej(η)ej, ei)〉(p)

= 〈−∇Σtη, ei〉(p).

Since p is arbitrary, ∇ ∂
∂t
ν = −∇Σtη, as desired.

Proof of Lemma 3. First note that gijt 〈∇ ∂

∂xi
(∇Σtη), ∂

∂xj
〉 = gijt 〈∇t

∂

∂xi

(∇Σtη), ∂
∂xj
〉. But

gijt 〈∇t
∂

∂xi
(∇Σtη),

∂

∂xj
〉 = gijt ∇t

∂

∂xj
∇t

∂

∂xi
(∇Σtη) = divgt(∇Σtη) = ∆Σtη. (A.14)

Proof of Lemma 4. Define vector fields X :=
∑n−1

i=1 ∇ ∂

∂xi
ν and Y :=

∑n−1
j=1 ∇ ∂

∂xj
ν.

Using local coordinates, we can also write X =
∑n−1

k=1 X
k ∂
∂xk

and Y =
∑n−1

l=1 Y
l ∂
∂xl

.
Then

||IIt||2 = gijt g
kl
t (IIt)ik(IIt)jl = gijt g

kl
t 〈X,

∂

∂xk
〉〈Y, ∂

∂xl
〉

= gijt g
kl
t X

α(gt)αkY
β(gt)βl

= gijt (gt)αβX
αY β

= gijt 〈X, Y 〉
= gijt 〈∇ ∂

∂xi
ν,∇ ∂

∂xj
ν〉

as desired.
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