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Bootstrap Procedure & Confidence Interval Estimation

The method we use for computing confidence intervals is based on the Markov model and
sampling probability model used throughout the RDS literature (Salganik 2004). Assuchitis a
variant of the bootstrap procedure developed by Salganik (2006), with the additional advantage
that it makes it possible to explore the impact of preferential recruitment on RDS estimates
produced with any of the RDS estimators. In this procedure one defines a resampling scheme
that can be used to create a collection of samples that, according to the model, have a distribution
similar to the actual sampling process that generated the data. To make this concrete, suppose
we wish to estimate the proportion of the population who are in some subgroup A (say, for
example that A represents members of the population who test positive for HIV, or some other
sexually transmitted disease). In this situation we wish to estimate both the proportion of the
population in A, and (in order to examine the statistical significance of the result) we need to
compute a confidence interval. Salganik's (2006) procedure provides a recipe for computing
such a confidence interval as follows. First, construct the following algorithm for computing a
single bootstrap estimate:

1. Divide the sample into two subsets: A[rec] consisting of individuals recruited by

members of A, and B[rec] consisting of individuals recruited by members in the

complement of A.

2. Select a “bootstrap seed” from the data by selecting an observation of the sample at



random (i.e. make a random draw from the sample by selecting from amongst the
observations so that each observation has equal probability of being drawn).

3. Starting with the bootstrap seed select a new observation by selecting at random (with
equal probability) from either A[rec] or B[rec] depending on the group membership of
the bootstrap seed. Continue this process recursively until one has selected a sequence of
observations of the same size as the original sample. One then has a single bootstrap
sample whose size is identical to the original data set. The data in the sample consist of
an observed group membership and self-reported network size. A set of data constructed
in this manner will be called a bootstrapped data set, or bootstrapped data for short.

Next we use 1-3 above to create many bootstrapped data sets. Thus the next phases of the
algorithm are as follows.

4. Repeat 1-3 above until one has many versions of the bootstrapped data (i.e. one has many
artificial data sets, each constructed by the procedure above).

5. To compute a confidence interval for an estimator of p[A] [in principal any estimator,
though, at the time that Salganik was writing (2006), Volz and Heckathorn’s V-H
estimator (2008) had not be developed yet], apply the estimator to each member of the
collection of data sets above to yield a collection of bootstrapped estimates. This
collection can be used to compute confidence intervals by either computing the variance
of the bootstrapped variance (which is what Salganik (2006) does) or by reporting 95%
central quantiles of the bootstrapped estimates. The latter strategy has the advantages
that it is a standard approach in the bootstrap literature (Davison and Hinkley 1997) and
because it automatically provides intervals that are constrained to be within the interval

[0,1] as is natural for a proportion estimate.



In order to examine the implications of using this procedure to compute confidence intervals, we
recast this algorithm in a mathematically equivalent form that describes the model under which
groups and degrees are simulated for the bootstrapped data. First, in order to simulate group
memberships, we approximate the probability of transitions within and between the groups A

and B by constructing a Markov transition matrix

P= Nl (gt 1 ap)  1upl (0 4% nygp)
Mgl (Mgt ngg) nypl(ng,+ ngg)

where n_{A,B} is the number of observed transitions from group A to group B seen in the

original data. The terms”44 , "84 and ”ss are similarly the number of observed transitions
from the group indicated by the first subscript to the group indicated in the second subscript.
This matrix gives the exact probabilities of the transitions between groups under Salganik's
(2006) bootstrap. In terms of statistical modeling, P is the maximum likelihood estimate for the
transition probabilities under a first order Markov model for the group transitions observed in the
sample (see Anderson and Goodman 1957) for classical material on inference under this model,
see either Volz and Heckathorn (2008) or Goel and Salganik (2010) for detailed discussions of
P in the context of RDS). In Salganik's (2006) bootstrap, once groups have been simulated, we
can simulate degrees by making a random draw from the observed degrees for the appropriate
group. The entire process of creating a single bootstrapped data set can be described as follows.
1. Select a seed, e by making a random draw from the observed sample, thus % o will
be in A with probability 74/("4* 15) and in B with probability 74/ ("4 15) where 74
and "z are the number of observations in the sample from groups A and B respectively.
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3. After selecting ¥ through Y» | select bootstrapped degrees 41 through ¢» by

boo . boot

selecting % ' randomly from the observed degrees in the group corresponding too »+ .
boot boo .

Again, to be concrete, if ¥ is A then we select % ' by making a random draw from

the observed degrees for group A. If »*" is B then we select 4 by making a random
draw from the observed degrees for group B.
The description above can be summarized quite concisely by saying that the Salganik (2006)

bootstrap (i) models group membership (in A or B) as a linear first order Markov chain of length

7 with transition probabilities P and (ii) models degrees as conditionally independent given
group membership. Before we discuss the potential shortcomings of this approach we briefly
describe the modeling assumptions behind the other variance estimation approach currently in
use with RDS data.

There are two features of the above bootstrap procedure that are worth noting. First, the
above procedure can be used to estimate the sampling distribution of any RDS estimator. This is
because the bootstrap method is primarily a procedure for creating bootstrapped data. Thus, one
uses the procedure to construct a large number of synthetic data sets whose distribution, one
hopes, matches the sampling distribution of the actual RDS process. Then, in order to estimate
the sampling distribution of a population estimator, one applies that estimator to each of the
bootstrapped data sets in turn in order to create a large sample of bootstrapped population
estimates. Consequently, one can apply this approach to any RDS estimator, including the V-H

estimator developed by Volz and Heckathorn (2008).



The second feature that is worth noting is that in Salganik's (2006) procedure there are
two factors that clearly influence the ability of the bootstrap to approximate the actual sampling
distribution. The first is that one replaces the branching observations of the RDS sampling
process with a linear chain. The second is that one samples the entire data set when selecting
seeds. With regard to the first factor, one would expect that a bootstrap method that uses the
same branching structure as the data collection process would do a better job of replicating the
sampling distribution of RDS with the additional advantage that using the observed branching
structure avc;ids underestimating variance which results from treating dependent observations as
independent. With regard to the second factor, the seeds are drawn by the researcher from an
accessible stratum of the target population and are surely not distributed in the same manner as
the actual RDS sample. As a result, in our implementation of the bootstrap procedure (1) we
have used the observed branching structure of our sample, rather than a linear structure — this is
tantamount to treating the branching structure as a fixed feature of the survey design; (2) we have
treated seeds as a fixed aspect of the sampling design because they are selected by the researcher.
Were seeds selected at random, random selection of seeds should be incorporated into the

bootstrap procedure. Thus our bootstrap algorithm can be described as follows:
boot
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before. Thus we select % randomly from the observed degrees in the group
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corresponding to ¥+ . Again, to be concrete, if ** is A then we select % by
making a random draw from the observed degrees for group A. If »"™ is B then we

select 4 by making a random draw from the observed degrees for group B.
In order to obtain confidence intervals, we use the above method to simulate 100,000
bootstrapped data sets and apply the V-H estimator to each of these yielding 100,000
bootstrapped population estimates. The confidence intervals reported are thus the central

0.025% to 0.975% quantiles of the t bootstrapped population estimates.

Extending the bootstrap procedure to assess the impact of recruitment biases on RDS
estimates

The bootstrap procedure described above can be used for studying the impact of different
ego-centric network compositions, or more realistically different estimates of ego-centric

network compositions. Recall that one of the key features of the bootstrap procedure is the

matrix, ? , of estimated referral probabilities determined by the observed inter and intra group
recruitments. This matrix gives an estimate (based on the observed RDS sample) of the
probabilities of inter and intra group recruitments. If we accept the RDS assumption of non-
preferential recruitment, then this matrix represents the maximum likelihood estimate of
respondents’ recruitment choices under the Markov model. However, in the presence of
recruitment biases, the actual recruitments will not represent the egocentric network
compositions of respondents. We can use alternative information on network composition to
determine what recruitment probabilities would be under alternative mixing scenarios. In this

paper, alternative information on network composition consistent with recruitment patterns that



would have resulted if respondents had recruited according to their self-reported network

composition and with respondents’ invited network composition was used to construct

alternative versions of the recruitment probability matrix £ . We then used these alternative
matrices in the bootstrap procedure to examine the impact of different network compositions on

the resulting V-H estimates. In particular, this was done by replacing the actual network

structure used to select ¥ with either the invited or the all-alter network structures. We then
used the bootstrap procedure to generate samples that, according to the reasoning behind the
RDS methodology, would have arisen under these alternative egocentric network structures.
One main advantage of this method is that instead of focusing on a particular RDS estimator, we
emphasize the process that is assumed to generate the RDS sample. As a result this method can

be used to study the impact of recruitment biases on any RDS estimator.
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