An Algorithm for Comparing Similarity Between Two Trees: Edit Distance with Gaps

Hangjun Xu
Department of Mathematics and Computer Science Duke University

April 7, 2014
M.S. Defense Presentation

Shape Matching

- Given two shapes, how to quantify the similarity between them? For instance:
- (0-dim) Point sets (e.g. data feature points in data mining);
- (1-dim) Curves (e.g. trajectories);
- (2-dim) Surfaces (e.g. faces, images).
- clustering.
- classification.

Edit Distance and String Matching/Sequence Alignment

- Edit distance, or Levenshtein distance, was first used to quantify similarity between two sequences of characters, also called "strings".
- One string is changed to another via a sequence of edit operations include: insert or delete a character, or substitute one character with another.
- Each edit operation has a cost, and the edit distance between two strings is defined to be the minimum cost of transforming one string to another.
- The edit distance gives rise to an alignment between two strings, i.e. a mapping between the characters in each string. A deleted character is aligned with a blank character. For instance,

$$
\begin{aligned}
& \mathrm{s} a-\mathrm{v}-\mathrm{e} \\
& \mathrm{~s} \text { a l vage }
\end{aligned}
$$

Applications of String Matching

- Computational biology: DNA sequence comparison (strings of characters A, G, C, T).
- Natural language processing: spell checking that compares the words entered and the words in a dictionary.
- String searching: finding a query string in a string database.

Computation of String Edit Distance

- Strings S_{1} and S_{2} with m and n characters, respectively.
- Gap in an alignment: a longest consecutive blank characters.
- Gap penalty function.
- Linear gap penalty (each blank character in a gap is charged equally): $O(m n)$, using dynamic programming;
- Convex gap penalty (the first blank character in a gap is charged more than the others): $O(m n)$, using dynamic programming;
- Arbitrary gap penalty: $O\left(m n^{2}+m^{2} n\right)$, using dynamic programming;
- Can be improved using parallel algorithms, etc.

A Related Problem: Trajectory Similarity

- A smooth (resp. continuous, C^{1}, etc) trajectory is a smooth (resp. continuous, C^{1}, etc) curve $\gamma:[0,1] \longrightarrow \mathbb{R}^{2}$. One can sample points from a trajectory, and define the similarity between two trajectories to be the similarity between the two sequences of sampled points in \mathbb{R}^{2}.
- S. Sankararaman, P. Agarwal and T. Molhave defined a comparison model that combines string alignment and dynamic time warping.
- Sequence Alignment: noise-robust (gaps) but bad with non-uniform sample rate.
- Dynamic Time Warping (average Fréchet distance): Good with non-uniform sample rate (multiple points can be matched to a single point), but bad with noise.

Tree Comparison: Motivation

- Many (complicated) shapes have underlying tree structures (e.g. via deformation retract) that preserve some key topological and geometric properties (e.g. connectedness, genus, homotopy type, critical points, etc).
- Thus, we can reduce the comparison of such shapes to the comparison of their underlying tree structures (linear hence might be simpler) if the information we care about are preserved.
- The underlying tree structure of a shape can be thought of as its skeleton.

Example 1: Medial Axis

Let S be a region in \mathbb{R}^{2} such that $C:=\partial S$ is a planer curve. The medial axis consists of all centers of disks (w.r.t. Euclidean norm) contained in S that intersect C tangentially at least twice:

Figure: Picture from http:
//www.lems.brown.edu/vision/Presentations/Wolter/figs.html.

- Tree structure if C is piecewise polygonal.
- Topological skeleton: deformation retract.
- Robotics: effective motion planning.

Example 2: Contour Trees (revisited later)

Terrain and level sets:

Figure: Picture by Tingran Gao and Hangjun Xu.

- A connected component of a level set is called a contour.
- Change of topology occur at critical points of the height function: local maximum (die), local minimum (born) and saddles (split/join).
- Contour tree: evolution of contours. Nodes: critical points; Edges: (u, v) if a contour appears at v and disappears at u.
- Terrain comparison \longrightarrow contour tree comparison.

Classic Tree Edit Distance: Setups

- Tree T : ordered (sibling order is defined), labeled (each node has assigned a symbol from a finite alphabet Σ).
- Edit Operations:
(a) Rename. To rename one node label to another.
(b) Delete. To delete a node u, and all children of u become children of the parent of u, while maintaining the order.
(c) Insert. To insert a node u as a child of u^{\prime}. A consecutive sequence of children of u^{\prime} now becomes the children of u.

Figure: Picture from Philip Bille: A Survey on Tree Edit Distance and Related Problems.

Classic Tree Edit Distance: Setups Continued

Fix two ordered labeled trees T_{1} and T_{2} with vertex sets V_{1} and V_{2}, respectively.

- A cost function is a metric $p: \Sigma \cup\{\perp\} \times \Sigma \cup\{\perp\} \longrightarrow \mathbb{R}^{\geq 0}$.
- $p(u, v)$ is the cost of relabeling u to $v, u \in V_{1}, v \in V_{2}$.
- $p(*, \perp)$ or $p(\perp, *)$ is the cost of deletion or insertion, respectively, where \perp is a special character outside of Σ.
- $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$: edit script taking T_{1} to T_{2}. Cost of S is

$$
C(S):=\sum_{i=1}^{n} C\left(s_{i}\right)
$$

Definition

The edit distance between T_{1} and T_{2} is defined to be: $\gamma\left(T_{1}, T_{2}\right):=\min \left\{C(S) \mid S\right.$ is an edit script taking T_{1} to $\left.T_{2}\right\}$.

Classic Tree Edit Distance: Edit Script Mapping

A edit script gives rise to a mapping between two trees: graphical representation.

Definition (Mapping Between Two Trees)

$M \subset V_{1} \times V_{2}$. For any (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in M :
(1) $u=u^{\prime}$ if and only if $v=v^{\prime}$;
(2) u is to the left of u^{\prime} if and only if v is to the left of v^{\prime};
(3) u is an ancestor of u^{\prime} if and only if v is an ancestor of v^{\prime}.

Figure: Picture from Philip Bille: A Survey on Tree Edit Distance and Related Problems.

Classic Tree Edit Distance Algorithms: an overview

Let $m:=\left|T_{1}\right|, n:=\left|T_{2}\right|, D_{i}:=\operatorname{depth}\left(T_{i}\right)$ and $L_{i}:=\left|\operatorname{leaves}\left(T_{i}\right)\right|$, $i=1,2$.

- Straightforward dynamic programming algorithm: $O\left(m^{2} n^{2}\right)$;
- Zhang and Shasha, 1989: $O\left(m n \min \left\{D_{1}, L_{1}\right\} \min \left\{D_{2}, L_{2}\right\}\right)$, using key roots;
- Klein, 1998: $O\left(m^{2} n \log n\right)$, using path decomposition;
- Chen, 2001: $O\left(m n+L_{1}^{2} n+L_{1}^{2.5} L_{2}\right)$;
- Dulucq, Touzet, 2003: $O\left(m n \log ^{2} n\right)$;
- Demaine et al, 2009: $O\left(m^{2} n\right)$.

Classic Tree Edit Distance Simple DP Algorithm Part I: Terminology

- Fix left-to-right postorder traversal \longrightarrow numbering among all the nodes.
- $T[i]$: the $i^{\text {th }}$ node.
- $l(i)$: the index of the leftmost leaf descendant of the subtree rooted at $T[i]$. (e.g. $T[i]$ is a leaf $\Longrightarrow l(i)=i$).
- $r(i)$: the index of the rightmost leaf descendant of the subtree rooted at $T[i]$. (e.g. $T[i]$ is a leaf $\Longrightarrow r(i)=i$).
- $p(i)$: parent of $T[i]$; and $\operatorname{desc}(i)$: descendants of $T[i]$.
- $Q\left[i . . i^{\prime}, j . . j^{\prime}\right]$: edit distance between $T_{1}\left[i . . i^{\prime}\right]$ and $T_{2}\left[j . . j^{\prime}\right]$.

Classic Tree Edit Distance Simple DP Algorithm Part II: Recurrence

Theorem

For any $i \in \operatorname{desc}\left(i_{1}\right)$ and $j \in \operatorname{desc}\left(j_{1}\right)$,

$$
Q\left[l\left(i_{1}\right) . . i, l\left(j_{1}\right) . . j\right]=\min \left\{\begin{array}{l}
Q\left[l\left(i_{1}\right) . . i-1, l\left(j_{1}\right) . . j\right]+p(i, \perp) \\
Q\left[l\left(i_{1}\right) . . i, l\left(j_{1}\right) . . j-1\right]+p(\perp, j) \\
Q\left[l\left(i_{1}\right) . . l(i)-1, l\left(j_{1}\right) . . l(j)-1\right] \\
+Q[l(i) . . i-1, l(j) . . j-1]+p(i, j)
\end{array}\right.
$$

Edit Distance with Gaps: Motivation

- Recall gaps in string matching: longest consecutive blank characters. Analogues for trees?
- Noise in the input can be modeled by gaps.

Two questions:
(1) What is a "good" gap model?
(2) What is a "good" gap penalty function?

One heuristic for gap penalty function: a single large gap is more probable than isolated smaller gaps.

- A function $w: \mathbb{Z}^{+} \longrightarrow \mathbb{R}^{\geq 0}$ is convex if
$w\left(k_{1}+k_{2}\right) \leq w\left(k_{1}\right)+w\left(k_{2}\right), k_{1}, k_{2} \in \mathbb{Z}^{+}$.
- $w(k):=a+b k$ is convex if $a \geq 0, b>0$.
- Classic edit distance: linear gap penalty.

Complete Subtree Gap Edit Distance Part I: Setups

Definition (Complete Subtree Gap Model, Touzet, 2003)

Given a tree T with vertex set V. A gap g_{v} of T is the complete subtree rooted at some vertex $v \in V$.

- Admissible Edit Operations:
(1) Relabel a node;
(2) Delete a gap;
(3) Insert a gap.
- We will use affine gap penalty function.
- Objective function:

$$
\begin{equation*}
\gamma(M):=\sum_{(u, v) \in M} p(u, v)+\sum_{g \in G} a+b|g|, \quad u \in V_{1} v \in V_{2}, \tag{0.1}
\end{equation*}
$$

where $M: T_{1} \longrightarrow T_{2}, G$ is the set of all gaps in M.

Complete Subtree Gap Edit Distance Part II: Auxiliary Functions

- If u is a gap node, then all its descendants are gap nodes.
- Starting a gap and continuing a preexisting gap have different penalty.
- How to determine if a gap node is starting or continuing a gap? Preorder traversal!

Definition

$$
\begin{aligned}
& \text { For } 1 \leq i^{\prime} \leq i \leq m:=\left|T_{1}\right|, \text { and } 1 \leq j^{\prime} \leq j \leq n:=\left|T_{2}\right| \text {, set: } \\
& \qquad\left\{\begin{array}{l}
Q\left[i^{\prime} . . i, j^{\prime} . . j\right]:=\gamma\left(T_{1}\left[i^{\prime} . . i\right], T_{2}\left[j^{\prime} . . j\right]\right) ; \\
Q_{\perp *}\left[i^{\prime} . . i, j^{\prime} . . j\right]:=\gamma\left(T_{1}\left[i^{\prime} . i\right], T_{2}\left[j^{\prime} . . j\right]\right) \text { such that } i \rightarrow \perp ; \\
Q_{* \perp}\left[i^{\prime} . . i, j^{\prime} . . j\right]:=\gamma\left(T_{1}\left[i^{\prime} . . i\right], T_{2}\left[j^{\prime} . . j\right]\right) \text { such that } \perp \rightarrow j
\end{array}\right.
\end{aligned}
$$

- Goal: compute $Q[1 . . m, 1 . . n]$.

Complete Subtree Gap Edit Distance Part III: Boundary Conditions

- $\emptyset=$ empty tree.
- Preorder traversal.
- Boundary conditions:

$$
\begin{array}{cc}
Q[\emptyset, \emptyset]=0 & \\
Q[1 . . i, \emptyset]=\infty, & (\text { for } 1 \leq i \leq m) \\
Q[\emptyset, 1 . . j]=\infty, & (\text { for } 1 \leq j \leq n) \\
Q_{\perp *}[1 . . i, \emptyset]=a+b i, & (\text { for } 1 \leq i \leq m) \\
Q_{\perp *}[\emptyset, 1 . . j]=\infty, & (\text { for } 1 \leq j \leq n) \\
Q_{* \perp}[1 . . i, \emptyset]=\infty, & (\text { for } 1 \leq i \leq m) \\
Q_{* \perp}[\emptyset, 1 . . j]=a+b j, & (\text { for } 1 \leq j \leq n)
\end{array}
$$

Complete Subtree Gap Edit Distance Part IV: Recurrence

Theorem 3.1 (Recurrence of Auxiliary Matrices in Complete Subtree Gap Model). Given the preorder ordering on the nodes of two ordered labeled trees T_{1} and T_{2}. Fix nodes $i_{1} \in V_{1}, j_{1} \in V_{2}$. For any $i \in \operatorname{desc}\left(i_{1}\right)$ and $j \in \operatorname{desc}\left(j_{1}\right)$, we have the following recurrence relations:

$$
\begin{align*}
& Q\left[i_{1} . . i, j_{1} . . j\right]=\min \left\{\begin{array}{l}
Q\left[i_{1} . . i-1, j_{1} . . j-1\right]+p(i, j) \\
Q_{\perp *}\left[l_{1} . . i, j_{1} . . j\right] \\
Q_{* \perp}\left[i_{1} . . i, j_{1} . . j\right]
\end{array}\right. \tag{3.3.3}\\
& Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right]=\min \left\{\begin{array}{l}
Q\left[i_{1} . . i-1, j_{1} . . j\right]+(a+b) \\
Q_{\perp *}\left[i_{1} . . p(i), j_{1} . . j\right]+b(i-p(i))
\end{array}\right. \tag{3.3.4}\\
& Q_{* \perp}\left[i_{1} . . i, j_{1} . . j\right]=\min \left\{\begin{array}{l}
Q\left[i_{1} . . i, j_{1} . . j-1\right]+(a+b) \\
Q_{* \perp}\left[i_{1} . . i, j_{1} . . p(j)\right]+b(j-p(j))
\end{array}\right. \tag{3.3.5}
\end{align*}
$$

Here $p(i)$ (resp. $p(j))$ is the index of parent node (if exists) of i (resp. j).

Complete Subtree Gap Edit Distance Part IV: Recurrence Continued

Illustration of recurrence for $Q_{\perp *}$, case II.

Figure: $p(i)$ and i are both gap nodes.

$$
Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right]=Q_{\perp *}\left[i_{1} . . p(i), j_{1} . . j\right]+b(i-p(i))
$$

Complete Subtree Gap Edit Distance Part V: Algorithm

- Let treedist $\left(i_{1}, j_{1}\right):=Q\left[i_{1} . . r\left(i_{1}\right), j_{1} . . r\left(j_{1}\right)\right]$.

```
Algorithm 2 Complete Subtree Gap Tree Edit Distance
    Input: Tree \(T_{1}\) and \(T_{2}\)
    Output: treedist \(\left(i_{1}, j_{1}\right)\), where \(1 \leqslant i_{1} \leqslant m:=\left|T_{1}\right|\), and \(1 \leqslant j_{1} \leqslant n:=\left|T_{2}\right|\)
    Preprocessing: Compute the index of the parent of each node and the \(r\) function
    for ( \(i_{1}, j_{1}=1 ; i_{1} \leqslant m, j_{1} \leqslant n ; i_{1}++, j_{1}++\) ) do
        for ( \(i=i_{1} ; i \leqslant r\left(i_{1}\right) ; i++\) ) do
            for \(\left(j=j_{1} ; j \leqslant r\left(j_{1}\right) ; j++\right)\) do
            Compute treedist \(\left(i_{1}, j_{1}\right)\) by first compute \(Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right]\),
            then compute \(Q_{* \perp}\left[i_{1} . . i, j_{1} . . j\right]\)
            end for
        end for
    end for
```

- Running time $O\left(m^{2} n^{2}\right)$.

General Gap Edit Distance of Binary Trees Part I: Setups

Definition (General Gaps Model, Touzet, 2003)

Given an ordered labeled tree T with vertex set V and edge set E. A gap g is a tree with vertex set a subset of V and edges in E whose both end points lie in that subset. That is, g is a subtree of T.

- Admissible Edit Operations:
(1) Relabel a node;
(2) Delete a gap: descendants of a gap will become children of the parent of the root of the gap;
(3) Insert a gap.
- Touzet, 2003: Computation of general gap edit distance is NP-hard even for affine gap penalty.
- Restrict to binary trees. Same auxiliary functions and boundary conditions.

General Gap Edit Distance of Binary Trees Part II: Recurrence

Theorem 3.2 (Recurrence of Auxiliary Matrices in General Gap Model for Binary Trees). Given the preorder ordering on the nodes of two ordered labeled trees T_{1} and T_{2}. Fix nodes $i_{1} \in V_{1}, j_{1} \in V_{2}$. For any $i \in \operatorname{desc}\left(i_{1}\right)$ and $j \in \operatorname{desc}\left(j_{1}\right)$, we have the following recurrence relations:

$$
\begin{gather*}
Q\left[i_{1} . . i, j_{1} . . j\right]=\min \left\{\begin{array}{l}
Q\left[i_{1} . . i-1, j_{1} . . j-1\right]+p(i, j) \\
Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right] \\
Q_{* \perp}\left[i_{1} . . i, j_{1} . . j\right]
\end{array}\right. \tag{3.4.5}\\
Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right]=\min \left\{\begin{array}{l}
Q\left[i_{1} . . i-1, j_{1} . . j\right]+(a+b) \\
Q_{\perp *}\left[i_{1} . . i-1, j_{1} . . j\right]+b \\
\min _{j_{1} \leqslant k \leqslant j}\left\{Q_{\perp *}\left[i_{1} . . p(i), j_{1} . . k\right]\right. \\
+Q[p(i)+1 . . i-1, k+1 . . j]+b\}
\end{array}\right. \tag{3.4.6}\\
Q_{* \perp}\left[i_{1} . . i, j_{1} . . j\right]=\min \left\{\begin{array}{l}
Q\left[i_{1} . . i, j_{1} . . j-1\right]+(a+b) \\
Q_{* \perp}\left[i_{1} . . i, j_{1} . . j-1\right]+b \\
\min _{i_{1} \leqslant k \leqslant i}\left\{Q_{* \perp}\left[i_{1} . . k, j_{1} . . p(j)\right]\right. \\
+Q(k+1 . . i, p(j)+1 . . j-1)+b\}
\end{array}\right. \tag{3.4.7}
\end{gather*}
$$

Here $p(i)$ (resp. $p(j))$ is the index of parent node (if exists) of i (resp. j).

General Gap Edit Distance of Binary Trees Part III: Proof of Recurrence for $Q_{\perp *}$

Figure: $p(i)$ is a gap node and i is its left child. Gap nodes are labeled black.

$$
Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right]=Q_{\perp *}\left[i_{1} . . i-1, j_{1} . . j\right]+b .
$$

General Gap Edit Distance of Binary Trees Part III: Proof of Recurrence for $Q_{\perp *}$ Continued

Figure: $p(i)$ is a gap node and i is its right child. Gap nodes are labeled black.
$Q_{\perp *}\left[i_{1} . . i, j_{1} . . j\right]=Q_{\perp *}\left[i_{1} . . p(i), j_{1} . . k\right]+Q[p(i)+1 . . i-1, k+1 . . j]+b$.

General Gap Edit Distance of Binary Trees Part IV: Algorithm

- Let $\operatorname{treedist}\left(i_{1}, j_{1}\right):=Q\left[i_{1} . . r\left(i_{1}\right), j_{1} . . r\left(j_{1}\right)\right]$.

```
Algorithm 3 General Gap Tree Edit Distance
    Input: Tree \(T_{1}\) and \(T_{2}\)
    Output: treedist \(\left(i_{1}, j_{1}\right)\), where \(1 \leqslant i_{1} \leqslant m:=\left|T_{1}\right|\), and \(1 \leqslant j_{1} \leqslant n:=\left|T_{2}\right|\)
    Preprocessing: Compute the index of the parent of each node and the \(r\) function
    for ( \(i_{1}, j_{1}=1 ; i_{1} \leqslant m, j_{1} \leqslant n ; i_{1}++, j_{1}++\) ) do
        for ( \(i=i_{1} ; i \leqslant r\left(i_{1}\right) ; i++\) ) do
            for ( \(j=j_{1} ; j \leqslant r\left(j_{1}\right) ; j++\) ) do
                Compute treedist \(\left(i_{1}, j_{1}\right)\) by first compute \(Q_{\perp_{*}}\left[i_{1} . . i, j_{1} . . j\right]\),
                then compute \(Q_{* \perp}\left[i_{1} . . i, j_{1} . . j\right]\)
            end for
        end for
    end for
```

- Running time $O\left(m^{3} n^{2}+m^{2} n^{3}\right)$.

Applications of Complete Subtree Edit Distance to Contour Tree Comparison: Work in Progress

Questions: How do we compare two terrains?

Applications of Complete Subtree Edit Distance to Contour Tree Comparison: Work in Progress Continued

Figure: Terrain with its contour tree. Picture taken from P. Agarwal et al: I/O-Effcient Batched Union-Find and Its Applications to Terrain Analysis

- Noise in the input correspond to complete subtrees of the contour tree.
- Gap penalty: persistence, height, volume.

Open Problems and Future Works

- General gap edit distance for trees with fixed degree.
- Constraints of gap sizes.
- Geometric comparisons for trees.

