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1 Introduction: 1 minute

Welcome to my defense presentation. The title of my talk is: An Algorithm for

Comparing Similarity Between Two Trees. What I did in this project is that I

computed the general gap edit distance between two binary trees in O(n5) time.

Prior to our work, no such distance computation was given since the computation

for general gap edit distance between arbitrary tree case has been proved to be NP-

hard. Before I could tell you all about that, I need to tell you what tree edit distance

is, and what gap is. This talk consists of three parts: First, I will provide some

background in edit distance, tree comparisons, and I will discuss the classic tree edit

distance algorithm. Second, I will talk about two different models of gaps in trees.

∗M.S. defense presentation. Each • represents a slide.
†Ph.D. Candidate, Department of Mathematics, Duke University. hangjun@math.duke.edu,
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I will present the algorithms for computing the edit distance with each of these gap

models. Finally, I will discuss an application of edit distance with gaps in terrain

comparison. I will close this talk with some open problems and future works.

2 Shape Comparison using Edit Distance: 15 min-

utes

• Shape matching concerns that problem of quantifying and computing similarity

between two shapes like point sets, curves, and surfaces. Shape matching is also

closely related to clustering and classification of various shapes.

2.1 String Matching

• The edit distance, or Levenshtein distance, was first used to quantify similarity

between two sequences of characters, also called strings. The way such similarity is

defined is to transform one string to anther via edit operations include insertion,

deletion and substitution. Each operation has a cost, and the edit distance is defined

to be the minimal cost of such transformation. Edit operations give rise to alignments

of strings. An alignment is a way of placing one string on top of another to get a

matching between the characters in each string. A deleted character is aligned with a

special blank character. For instance, the string save can be aligned with the string

salvage with three deletions as:

s a - v - - e

s a l v a g e

The edit distance is the same as the optimal string alignment (i.e. with minimal

cost).

• Applications of string matching include comparisons of DNA sequences, which

consists of the characters A, G, C, T; spell checking; and string searchings.

• Now given two strings S1 and S2 with m and n characters, respectively. A gap in

an alignment of S1 and S2 is a longest consecutive blank characters. Different gap

penalty functions are used in different applications, and the algorithms for computing

the optimal alignment depend on the choice of gap penalty functions. For instance:

(1) Linear gap penalty (each blank character in a gap is charged equally): O(mn);

(2) Convex gap penalty (the first blank character in a gap is charged more than the

others): O(mn);
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(3) Arbitrary gap penalty: O(mn2 +m2n).

The above running times are all based on dynamic programming algorithms.

There are many parallel algorithms developed that can improve these running times.

• A related problem to string matching is the problem of trajectory comparisons.

A trajectory is simply a curve in R2. Sampling of a trajectory gives us a sequence of

points in the plane. We can use the similarity of two such sequences as a measure of

similarity between the two trajectories. S. Sankararman et al [17] defined a compar-

ison model that combines string alignment and dynamic time warping. We simply

remark that string alignment is good at dealing with noise since it can skip points in

an alignment (i.e. gaps). However, since a point can only be aligned another point,

it is not ideal if the sample rates are not uniform. On the other hand, dynamic time

warping (i.e. average Fréchet distance) allows multiple points to be aligned with a

single points, which remedies the disadvantage of string alignment.

2.2 Classic Tree Edit Distance

• The central problem we study in this project is how to quantify similarity between

two trees. The motivation comes from the fact that many complicated nonlinear

shapes have underlying linear tree structures. Moreover, these tree structures often

preserve many topological and geometric properties, e.g. connectedness, genus, homo-

topy type, critical points, etc. Therefore, instead of comparing the rather complicated

shapes, we can simply compare their underlying tree structures. Let me give you

two examples to illustrate this.

• Consider a region S in the plane with boundary C a planer curve. The medial

axis of S is defined to the collection of centers of disks contained in S that intersect C

tangentially at least twice. If C is a polygon, then the medial axis is a tree. One can

picture the medial axis as obtained by a deformation retract of S. Given the medial

axis and all the radii of the disks, one can reconstruct S in many cases.

• The second example is the contour tree of a terrain. Here is a picture of a terrain

in R3 (point to the picture), which is a graph of a height function defined on R2.

Notice that the water ponds in Figure 1 is the level set of the height function

with respect to some z value. A connected component of a level set is called a

contour. One key observation is that the level sets only change topology at critical

points of the height functions, which consists of local maximum, local minimum and

saddles. A contour is first born at a local minimum, and dies at local maximum.

At a saddle point, either two contours join and become a single contour, or a single

contour splits into two. The contour tree is defined to be a graph whose vertices

are critical points, and (u, v) is an edge if there is a contour that appears at v
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Figure 1: Animated terrain drawn using polynomial height functions. Picture by
Tingran Gao and Hangjun Xu.

and disappears at u. It was shown that this actually defines a tree. Notice that no

matter how complicated the terrain is, its contour tree is always a tree, and captures

the evolution of contours of that terrain. Thus, we can use similarity between two

contour trees as a measure of similarity between the two corresponding terrains.

• So now the question is: How do we measure similarity between two trees? A

well-known distance function, called edit distance, is motivated by the edit operations

in string matching. For the rest of the talk, we assume that all trees are ordered and

labeled, where ordered means that an ordering is defined among all the siblings; and

labeled means that each node has assigned a symbol from a finite alphabet Σ. Similar

to the string matching case, we have three edit operations (see Figure 2):

Figure 2: Edit operations. Picture from [5]
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(a) Rename. To rename label on one node to another.

(b) Delete. To delete a node u, and all children of u become children of the parent of

u, while maintaining the order.

(c) Insert. To insert a node u as a child of u′. A consecutive sequence of children of

u′ now becomes the children of u.

Now for the cost of each edit operation, we choose a metric

p : Σ ∪ {⊥} × Σ ∪ {⊥} −→ R≥0,

symmetric, positive definite and satisfies the triangle inequality. Here p(u, v) is the

cost of relabeling u to v, and p(∗,⊥) or p(⊥, ∗) denote the cost of deletion or insertion.

⊥ plays the same role as the blank character in string alignment.

An edit script S := {s1, s2, · · · , sn} taking T1 to T2 is simply a sequence of edit

operations si. The cost of S is defined to be the total costs of all the edit operations

(simply point to the formula in the slides).

Now the edit distance between T1 and T2 is defined to be the minimal cost edit

script taking T1 to T2 (simply point to the definition in the slides).

• Here is a graphic representation of an edit script, which is called a mapping

from T1 to T2, analogues to an alignment between two strings (see Figure 3). You

Figure 3: A mapping between two trees. Picture from [5].

can see that nodes labeled c on both trees are deleted; node labeled f on the left is

relabeled to a; and the node labeled e on the left is relabeled to d.

More formally, we have (Here, simply say that a mapping M is map from T1 to T2

that is one-to-one, and preserves the sibling order and the ancestor order. No need to

read through the definitions.):

Definition 2.1 (Mapping Between Two Trees). M ⊂ V1 × V2. For any (u, v) and

(u′, v′) in M :
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(1) u = u′ if and only if v = v′; this is called the one-to-one condition;

(2) u is to the left of u′ if and only if v is to the left of v′; this is called the sibling

order condition;

(3) u is an ancestor of u′ if and only if v is an ancestor of v′; this is called the ancestor

order condition.

• The edit distance is the same as an optimal mapping. There are many

studies on computing the edit distance efficiently. We now list some representative

works. Let m := |T1|, n := |T2|, Di := depth(Ti) and Li := |leaves(Ti)|, i = 1, 2.

(1) Straightforward dynamic programming algorithm: O(m2n2);

(2) Zhang and Shasha [24], 1989: O(mnmin{D1, L1}min{D2, L2}), using key roots;

(3) Klein [16], 1998: O(m2n log n), using path decomposition;

(4) Chen [8], 2001: O(mn+ L2
1n+ L2.5

1 L2);

(5) Dulucq, Touzet [13], 2003: O(mn log2 n);

(6) Demaine et al [10], 2009: O(m2n).

• We briefly present the straightforward dynamic programming algorithm, which

serves as a motivation for our work. Here are some terminologies (Simply point to the

slides, and read through them quickly):

(1) Fix left-to-right postorder traversal −→ numbering among all the nodes.

(2) T [i]: the ith node.

(3) l(i): the index of the leftmost leaf descendant of the subtree rooted at T [i]. (e.g.

T [i] is a leaf =⇒ l(i) = i).

(4) r(i): the index of the leftmost leaf descendant of the subtree rooted at T [i]. (e.g.

T [i] is a leaf =⇒ r(i) = i).

(5) p(i): parent of T [i]; anc(i): and desc(i): descendants of T [i].

(6) Q[i..i′, j..j′]: edit distance between T [i..i′] and T [j..j′].

• We have the following recurrence for Q:
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Theorem 2.1. For any i ∈ desc(i1) and j ∈ desc(j1),

Q[l(i1)..i, l(j1)..j] = min


Q[l(i1)..i− 1, l(j1)..j] + p(i,⊥)

Q[l(i1)..i, l(j1)..j − 1] + p(⊥, j)

Q[l(i1)..l(i)− 1, l(j1)..l(j)− 1] +Q[l(i)..i− 1, l(j)..j − 1] + p(i, j)

To see this, simply note that either i is deleted (point to p(i,⊥)), in which case we

have the first recursion; or j is deleted (point to p(⊥, j)), in which case we have the

second recursion; or i is mapped to j (point to p(i, j) and Figure 4), in which case

T1[l(i1)..l(i)− 1] is mapped with T2[l(j1)..l(j)− 1], and the remaining T1[l(i)..i− 1] is

mapped with T2[l(j)..j − 1]. This proves Theorem 2.1.

Figure 4: Third case in classic edit distance recurrence.

3 Here is What I did: Tree Edit Distance with

Gaps: 20 minutes

•Now, let me tell about what I did for this project. Recall that in string alignment,

we have the notion of a gap that denotes a longest consecutive sequence of blank

characters. We see from the trajectory matching example, these gaps can be viewed

as noise in the input. Two natural questions are: How do we define gaps in trees?

and What should the gap penalty function be? One heuristic is that a single

“large” gap is more likely to appear than several isolated smaller gaps. This suggests

that we use a convex function as gap penalty (point to the definition of convexity in

the slides). In particular, an affine function (point to the affine function in the slides)

is convex. For the following, we always assume that the gap penalty is affine.
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3.1 Complete Subtree Gap Model

• The first model of gap is called the complete subtree model, first defined by

Touzet:

Definition 3.1 (Complete Subtree Gap Model, Touzet, [22]). Given a tree T with

vertex set V . A gap gv of T is the complete subtree rooted at some vertex v ∈ V .

The edit operations now become:

1. Relabel a node;

2. Delete a gap;

3. Insert a gap.

Notice that in this model, if one node is deleted, all of its descendants will be deleted

since deletion and insertion are done in gaps. Given a mapping M , its cost is given

by

γ(M) :=
∑

(u,v)∈M

p(u, v) +
∑
g∈G

a+ b|g|, u ∈ V1 v ∈ V2, (3.1)

This is the function that we are trying to minimize.

• Since we are using affine gap penalty, starting a gap has different penalty than

continuing a gap. To determine whether a deleted node is starting or continuing a

gap, we need the information about its parent. This suggest that we use the preorder

traversal or order the nodes. We define three functions. For 1 ≤ i′ ≤ i ≤ m := |T1|,
and 1 ≤ j′ ≤ j ≤ n := |T2|, set:

Q[i′..i, j′..j] := γ(T1[i
′..i], T2[j

′..j]);

Q⊥∗[i
′..i, j′..j] := γ(T1[i

′..i], T2[j
′..j]) such that i→⊥;

Q∗⊥[i′..i, j′..j] := γ(T1[i
′..i], T2[j

′..j]) such that ⊥→ j

(3.2)

where m is the number of nodes in T1, and n is the number of nodes in T2. Thus,

our goal is to compute Q[1..m, 1..n].

•We can set the boundary conditions of Q,Q⊥∗ and Q∗⊥ as follows (here ∅ means

an empty tree):

Q[∅, ∅] = 0,

Q[1..i, ∅] =∞, (for 1 ≤ i ≤ m)

Q[∅, 1..j] =∞, (for 1 ≤ j ≤ n)

8



Q⊥∗[1..i, ∅] =∞, (for 1 ≤ i ≤ m)

Q⊥∗[∅..1..j] = aj + b, (for 1 ≤ j ≤ n)

since it is impossible to match T1[1..i] to an empty tree such that i is a gap point; and

there is a unique matching between en empty T1 with T2[1..j]: we have j gap points.

By symmetry, we set

Q∗⊥[1..i, ∅] = ai+ b, (for 1 ≤ i ≤ m)

Q∗⊥[∅, 1..j] =∞, (for 1 ≤ j ≤ n)

• The recurrences for Q,Q⊥∗ and Q∗⊥ are given by, with i, j descendants of i1 and

j1 respectively:

Theorem 3.1 (Recurrence of Auxiliary Matrices in Complete Subtree Gap Model).

Given the preorder ordering on the nodes of two ordered labeled trees T1 and T2. Fix

nodes i1 ∈ V1, j1 ∈ V2. For any i ∈ desc(i1) and j ∈ desc(j1), we have the following

recurrence relations:

Q[i1..i, j1..j] = min


Q[i1..i− 1, j1..j − 1] + p(i, j)

Q⊥∗[l1..i, j1..j]

Q∗⊥[i1..i, j1..j]

(3.3)

Q⊥∗[i1..i, j1..j] = min

Q[i1..i− 1, j1..j] + (a+ b)

Q⊥∗[i1..p(i), j1..j] + b(i− p(i))
(3.4)

Q∗⊥[i1..i, j1..j] = min

Q[i1..i, j1..j − 1] + (a+ b)

Q∗⊥[i1..i, j1..p(j)] + b(j − p(j))
(3.5)

Here p(i) (resp. p(j)) is the index of parent node (if exists) of i (resp. j).

• Let’s only look at the recurrence for Q⊥∗. If p(i) is not a gap node or does not

exit, then i is starting a new gap, hence we have the firs recursion; Otherwise p(i) is

a gap node, and i is continuing a gap (point to Figure 5).

All the descendants of p(i) should all be deleted. There are i−p(i) many of them,

and hence the penalty b(i− p(i)), and we backtrack this recursion to ending at p(i).

• Here is the algorithm for computing the recurrences (point to the algorithm in

the slides). For each i1, j1, i1 going from 1 to m; j1 going from 1 to n, we compute

Q[i1..i, j1..j] in increasing order of i and j; and for each fixed i, j, we compute Q by

first compute Q⊥∗, then compute Q∗⊥. The running time is O(m2n2).
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Figure 5: p(i) and i are both gap nodes.

3.2 General Gap Model

• The complete subtree model for gaps is too restrictive. We now study a general gap

model, first defined by Touzet:

Definition 3.2 (General Gaps Model, Touzet [22]). Given an ordered labeled tree T

with vertex set V and edge set E. A gap g is a tree with vertex set a subset of V and

edges in E whose both end points lie in that subset.

That is, a gap is any part of T that is a tree on its own. The edit operations are

now modified to: dmissible Edit Operations:

1. Relabel a node;

2. Delete a gap: descendants of a gap will become children of the parent of the root

of the gap;

3. Insert a gap.

Unfortunately, Touzet showed that the computation of general gap edit dis-

tance is NP-hard even for affine gap penalty functions. This suggests that maybe

we should restrict our comparison to a subclass of trees in order to compute this

distance in polynomial time.

• Thus, we compute the general gap edit distance for binary trees. Here are the

recurrences of Q,Q⊥∗ and Q∗⊥, defined in the same way as in the complete subtree

case, with i, j descendants of i1 and j1 respectively.

Theorem 3.2 (Recurrence of Auxiliary Matrices in General Gap Model for Binary

Trees). Given the preorder ordering on the nodes of two ordered labeled trees T1 and
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T2. Fix nodes i1 ∈ V1, j1 ∈ V2. For any i ∈ desc(i1) and j ∈ desc(j1), we have the

following recurrence relations:

Q[i1..i, j1..j] = min


Q[i1..i− 1, j1..j − 1] + p(i, j)

Q⊥∗[i1..i, j1..j]

Q∗⊥[i1..i, j1..j]

(3.6)

Q⊥∗[i1..i, j1..j] = min



Q[i1..i− 1, j1..j] + (a+ b)

Q⊥∗[i1..i− 1, j1..j] + b

min
j1≤k≤j

{
Q⊥∗[i1..p(i), j1..k]

+Q[p(i) + 1..i− 1, k + 1..j] + b
}

(3.7)

Q∗⊥[i1..i, j1..j] = min



Q[i1..i, j1..j − 1] + (a+ b)

Q∗⊥[i1..i, j1..j − 1] + b

min
i1≤k≤i

{
Q∗⊥[i1..k, j1..p(j)]

+Q(k + 1..i, p(j) + 1..j − 1) + b
}

(3.8)

Here p(i) (resp. p(j)) is the index of parent node (if exists) of i (resp. j).

• We only sketch the recurrence for Q⊥∗. If p(i) is not a gap node, then i is

starting a new gap, hence the first recursion. If p(i) is a gap node and i is its left

child (point to Figure 6)

Figure 6: p(i) is a gap node and i is its left child. Gap nodes are labeled black.

Then i is continuing a gap and we backtrack to ending at i− 1.

• Otherwise i is the right child (point to Figure 7) Then i is also continuing a gap,

and T1[i1..p(i)] can be mapped with T2[j1..k], for any j1 ≤ k ≤ j, and we backtrack

to ending at p(i). The remaining part of T1: T1[p(i) + 1..i − 1] is mapped with the

remaining part of T2: T2[k + 1..j].
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Figure 7: p(i) is a gap node and i is its right child. Gap nodes are labeled black.

Figure 8: Two terrains.

• Here is the algorithm (point to the algorithm in the slides) with running time

O(m3n2 +m2n3). It is similar to the algorithm for the complete subtree model.

4 Applications and Future Works: 4 minutes

4.1 Application of Complete Subtree Gap Edit Distance in

Contour Tree Comparison

Now we briefly discuss an application of complete subtree gap edit distance in contour

tree comparison. Suppose we have two terrains that we want to determine how similar

they are (point to Figure 4.1 in the slides):

Recall that to compare two terrains, we can compare their contour trees. Here is

a terrain with its contour tree (point to Figure 9):

It can be seen that noise in the input correspond to complete subtrees in

the contour tree. Thus complete subtree gap edit distance is applicable. We can
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Figure 9: Terrain with its contour tree. Picture taken from P. Agarwal et al: I/O-
Effcient Batched Union-Find and Its Applications to Terrain Analysis

use many geometric gap penalty functions, e.g. the height or the volume of the part

of the terrain (due to noise) that correspond to a gap. We can also use topological

penalty functions, e.g. the persistence of the part of the terrain that correspond to a

gap.

Complete understanding of this application is still work in progress.

4.2 Future Works

• The recurrences for the general gap tree edit distance computations suggest that

the reason for the arbitrary tree case be NP-hard is that there are too many

branching factors, or degrees for each node. A natural next step is to study such

distance between trees with fixed degree, e.g. ternary trees.

• In our model, gaps do not have any size constraints. For practical applications,

it is more natural to have some upper bound on the gap size, as one usually has

some control over the size of the noise. The question thus is: Can we incorporate

that in the edit distance?

• The edit distance is a topological similarity measure. Thus the question is: It is

possible to find a suitable geometric similarity measure, and combine it with the

edit distance as in the trajectory comparison case?
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