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I. INTRODUCTION

QUANTITATIVE canvas weave analysis has many ap-
plications in art investigations of paintings, including

dating, forensics, canvas rollmate identification [1]–[3]. Tra-
ditionally, canvas analysis is based on x-radiographs. Prior
to serving as a painting canvas, a piece of fabric is coated
with a priming agent; smoothing its surface makes this layer
thicker between and thinner right on top of weave threads.
These variations affect the x-ray absorption, making the weave
pattern stand out in x-ray images of the finished painting. To
characterize this pattern, it is customary to visually inspect
small areas within the x-radiograph and count the number
of horizontal and vertical weave threads; averages of these
then estimate the overall canvas weave density. The tedium
of this process typically limits its practice to just a few
sample regions of the canvas. In addition, it does not capture
more subtle information beyond weave density, such as thread
angles or variations in the weave pattern. Application of signal
processing techniques to art investigation are now increasingly
used to develop computer-assisted canvas weave analysis tools.

In their pioneering work [4], Johnson et al developed
an algorithm for canvas thread-counting based on windowed
Fourier transforms; further developments in [5], [6] extract
more information, such as thread angles and weave patterns.
Successful applications to paintings of art historical interest
include works by Vincent van Gogh [7], [8], Diego Velázquez
[9], Johannes Vermeer [10], among others [11]–[16].

A more robust and automated analysis technique was later
developed by Erdmann et al [17], based on autocorrelation
and pattern recognition algorithms, requiring less human in-
tervention. Unlike the Fourier-space based approach of [4],
[17] uses only the real-space representation of the canvas.
Likewise, [18] also uses real-space based features for canvas
texture characterization.

We consider here a new automated analysis technique for
quantitative canvas analysis, based on the 2D synchrosqueezed
transforms recently developed in [19]–[21]. In this Fourier-
space based method, the nonlinear synchrosqueezing proce-
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dure is applied to a phase-space representation of the image
obtained by wavepacket or curvelet transforms. The method
requires little human intervention; as shown below, it is very
robust and offers fine scale weave density and thread angle
information for the canvas. We compare our results with those
of the celebrated method developed in [4]–[6].

We explain our model for x-radiography images for canvas
analysis in Section II; the use and limitations of windowed
Fourier transforms are discussed in Section III-A. Section III-B
introduces the synchrosqueezed transform, with applications
to quantitative canvas analysis; section IV presents various
examples, applying our technique in art investigation.

II. MODEL OF THE CANVAS WEAVE PATTERN IN
X-RADIOGRAPHY

We denote by f the intensity of an x-radiograph of a paint-
ing; see Figure 1a for a (zoomed-in) example. Because x-rays
penetrate deeply, the image consists of several components: the
paint layer itself, primer, canvas (if the painting is on canvas or
on wood panel overlaid with canvas), possibly a wood panel (if
the painting is on wood), and sometimes extra slats (stretchers
for a painting on canvas, or a cradle for a painting on wood,
thinned and cradled according to earlier conservation practice.)
This x-ray image may be affected by noise or artifacts of the
acquisition process. We model the intensity function f as an
additive superposition of the canvas contribution, denoted by
c(x), and a remainder, denoted by p(x), that incorporates all
the other components. Our approach to quantitative canvas
analysis relies on a simple model for the x-ray image of the
weave pattern in the “ideal” situation. Since it is produced by
the interleaving of horizontal and vertical threads in a periodic
fashion, a natural general model is

f(x) = c(x) + p(x) := a(x)S(2πNφ(x)) + p(x). (1)

In this expression, S is a periodic function on the square
[0, 2π)2, the details of which reflect the basic weave pattern of
the canvas, e.g., whether it is a plain weave or perhaps a twill
weave. This is a generalization of more specific assumptions
used in the literature – for instance, in [4] plain weave canvas
is modeled by taking for S a sum of sinusoidal functions in
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the x and y directions; in [6], more general weave patterns
(in particular twill) are considered. The parameter N in (1)
gives the averaged overall weave density of the canvas (in both
directions). The function φ, which maps the image domain to
R2, is a smooth deformation representing the local warping of
the canvas; it contains information on local thread density,
local thread angles, etc. The slowly varying function a(x)
takes into account the variation of the amplitude of the x-ray
image of the canvas, possibly due to variation in illumination
conditions.

In some cases, the x-ray image may fail to show canvas
information in portions of the painting (e.g. when the paint
layer dominates); the model (1) is then not uniformly valid.
Because our analysis typically uses spatially localized infor-
mation (analyzing the image patch by patch), this affects our
results only locally: in those (small) portions of the image
we have no good estimates for the canvas parameters. For
simplicity, we assume in this exposition that (1) is valid for
the whole image.

In our Fourier-space based canvas analysis we represent the
weave pattern function S, periodic on [0, 2π)2, in terms of its
Fourier series,

c(x) =
∑
n∈Z2

a(x)Ŝ(n)e2πiNn·φ(x). (2)

This is a superposition of smoothly warped plane-waves with
local wave vectors N∇(n · φ(x)). The idea of our analysis
is to extract the function φ by exploiting that the Fourier
coefficients {Ŝ(n)} are dominated by a few leading terms.

III. FOURIER-SPACE BASED CANVAS ANALYSIS

A. Windowed Fourier transform

Although for canvas analysis c(x) is really 2-dimensional,
the main idea of our approach can be well understood using
a 1D analog. Let’s thus consider a one-dimensional function
(2):

c(x) =
∑
n∈Z

a(x)Ŝ(n)e2πiNnφ(x) (3)

where x ∈ R. Because a and φ vary slowly with x, we can
use Taylor expansions to approximate the function for x near
x0 as

c(x) ≈
∑
n∈Z

a(x0)Ŝ(n)e
2πiNnφ(x0)e2πiNn(x−x0)φ

′(x0). (4)

The right hand side of (4) is a superposition of complex
exponentials with frequencies Nnφ′(x0); these would stand
out in a Fourier transform as peaks in the Fourier spectrum.
Since the approximation is valid only near x0, a windowed
Fourier transform is needed, with envelope given by, e.g., a
Gaussian centered at x0 with width σ. We have then

W (x0, k) :=
1√
2πσ2

∫
e−2πik(x−x0)e−(x−x0)

2/2σ2

c(x) dx

≈
∑
n∈Z

a(x0)Ŝ(n)e
2πiNnφ(x0)e−2π

2σ2[k−Nnφ′(x0)]
2

. (5)

Instead of being sharply peaked, the spectrum of the windowed
Fourier transform is thus “spread out” around the Nnφ′(x0)

– a manifestation of the well-known uncertainty principle in
signal processing, with a trade-off w.r.t. the parameter σ: a
larger σ reduces the “spreading” at the price of a larger
error in the approximation (4), since the Gaussian is then
correspondingly wider in the real space.

The method of [4], [6] uses the local maxima of the
amplitude of the windowed Fourier transform to estimate the
location of {N∇(n · φ(x0))} (the 2D analog of Nnφ′(x0))
for a selection of positions x0 of the x-ray image (more
precisely, local swatches are used instead of the Gaussian
envelope, but the spirit is the same). For ideal signals, (5)
shows that the maxima of the amplitude |W (x0, ·)| identify
the dominating wave vectors in the Fourier-space, which are
then used to extract information, including weave density and
thread angles. Thread density is estimated by the length of
the wave vectors, and the weave orientation is determined by
the angles. This back-of-the-envelope calculation is reasonably
precise when N is much larger than 1, resulting in a small
O(1/N) error in the Taylor expansions, etc. In terms of the
canvas analysis, this means that the inverse of the average
thread density must be much smaller than the length scale of
the variation of the canvas texture, typically on the scale of
the size of the painting. This is essentially a high-frequency
assumption, ensuring that stationary phase approximations can
be applied in the time-frequency analysis. Details can be found
in standard references of time-frequency analysis, e.g., the
book [22].

In more complicated scenarios, in particular, when the x-ray
signal corresponding to the canvas is heavily “contaminated”
by the other parts of the painting, it is desirable to have more
robust and refined analysis tools at hand than locating local
maxima of the Fourier spectrum. The synchrosqueezed trans-
forms are nonlinear time-frequency analysis tools developed
for this purpose, and are hence suitable for canvas analysis in
more challenging situations.

B. Synchrosqueezed transforms

The synchrosqueezed transforms, or more generally time-
frequency reassignment techniques (see e.g., the recent review
[23]), have been introduced to deal with the “loss of resolu-
tion” due to the uncertainty principle. Originally introduced
in [24] for auditory signals, using a nonlinear squeezing
of the time-frequency representation to gain sharpness of
the time-frequency representation, the 1D synchrosqueezed
wavelet transform was revisited and analyzed in [25]. For the
application to canvas analysis, we rely on 2D extensions of
the synchrosqueezing transforms based on wavepacket and
curvelet transforms [19], [20]. This 2D synchrosqueezing
transform has been applied to atomic-resolution crystal image
analysis in [21]. In fact, the present algorithm for canvas
analysis is adapted from the crystal image analysis developed
in [21], a natural extension since canvas textures are very
“crystalline” in nature, from an image analysis point of view.

Let us again use the 1D example to illustrate the main idea
of synchrosqueezing; the technical details and the mathemati-
cal analysis of the algorithm can be found in [21]. The crucial
observation is that the phase of the complex function W (x, k),
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obtained from the windowed Fourier transform (5) contains
information on the local frequency (i.e., the instantaneous
frequency) of the signal. Indeed, for (x, k) such that k is close
to Nnφ′(x), we have

wf (x, k) :=
1

2π
= ∂x lnW (x, k) = Nnφ′(x) + o(N), (6)

where =(z) stands for the imaginary part of the complex num-
ber z. Motivated by this heuristic, the synchrosqueezed win-
dowed Fourier transform “squeezes” the time-frequency spec-
trum by reassigning the amplitude at (x, k) to (x,wf (x, k))
as

T (x, ξ) :=

∫
|W (x, k)|2δ(ξ − wf (x, k)) dk. (7)

This significantly enhances the sharpness of the time-
frequency representation and yields a finer estimate of the local
frequency of the signal.

This discussion generalizes readily to 2D signals. As the
orientation of the local wave vector is important, wave packets
and curvelets are used to enhance the resolution in the angular
direction in the Fourier space. The local wave vector is
estimated by the straightforward generalization of (6) to two
dimension, and the squeezing of the coefficient (7) then gives
a sharpened energy distribution on phase space:

T (x, ξ) ≈
∑
n∈Z2

|a(x)|2
∣∣Ŝ(n)∣∣2δ(ξ −N∇(n · φ(x))) (8)

in the sense of distribution. See [19]–[21] for more details,
as well as an analysis of the method. The peaks of the
synchrosqueezed spectrum T then provide estimates of the
N∇(n · φ(x)), in turn determining the thread count and
angle. Figure 1 illustrates the resulting spectrum of the syn-
chrosqueezed transform compared with the windowed Fourier
transform for a sample x-ray image from a canvas; it is
apparent that after synchrosqueezing, the phase-space rep-
resentation becomes much more compact. In particular, the
red circles in Figure 1c indicate the (very precise!) locations
of the dominating wave vectors, which determine the thread
count and angle. The nice performance and the robustness
of the synchrosqueezed transforms are supported by rigorous
mathematical analysis in [19]–[21].

IV. APPLICATIONS TO ART INVESTIGATIONS

Let us now present some results of quantitative canvas
analysis using 2D synchrosqueezed transforms. The algorithm
is implemented in Matlab. The codes are open source and
available for downloading as SynLab at http://web.stanford.
edu/∼haizhao/Codes.htm.

The first example is the painting F205 by Vincent van
Gogh, the x-ray image of which is shown in Figure 2. The
x-ray image is publicly available as part of the RKD dataset
[26] provided by the Netherlands Institute for Art History.
We choose this example because it was one of the first
examples analyzed using the method based on the windowed
Fourier transform; see [4, Figure 4] and also [6, Figure 6].
In Figure 3, the thread count and thread angle estimates
are shown for horizontal and vertical threads. Comparing
with the previous results in [4], [6], we observe that the

general characteristics of the canvas agree quite well. For
example, [6] reports average thread counts 13.3 threads/cm
(horizontal) and 16.0 threads/cm (vertical), while our method
obtains 13.239 threads/cm (horizontal) and 15.917 threads/cm
(vertical). Compared to the earlier results, the current analysis
gives a more refined spatial variation of the thread counts. In
particular, it captures the oscillation of the thread count on a
much finer scale. Detailed comparison using visual inspection
confirms the presence of these fine details.

We next consider a painting of Vermeer, Woman in Blue
Reading a Letter (L17), the x-ray image of which is also
available as part of the RKD dataset [26]. The canvas analysis
for Vermeer’s paintings is considerably more challenging than
that of van Gogh’s [10], [27]. This can be understood by
direct comparison of the x-ray images in Figures 4 and 2.
The stretchers and nails significantly perturb the x-ray image
for the Vermeer. Nevertheless the synchrosqueezed transform
based canvas analysis performs quite well on the Vermeer
example, as shown in Figure 5: although the thread count and
angle estimate are affected by artifacts in the x-ray image,
they still provide a detailed characterization of the canvas
weave. Figure 6 shows a zoom-in for the x-ray image and the
vertical thread angle map, further illustrating that the algorithm
captures (and quantifies) the deviation in the vertical thread
angle also recognizable by visual inspection.

To test the algorithm on a different type of canvas weave,
we applied it to the x-ray image of Albert P. Ryder’s The
Pasture, a painting on twill canvas. Figure 7 shows the result
for a portion of the canvas. The twill canvas pattern is clear on
the zoomed-in x-ray image. The method is still able to capture
fine scale features of the canvas; the admittedly higher number
of artifacts is due to the increased difficulty to “read” a twill
vs. a standard weave pattern, as well as a weaker canvas signal
on the x-ray.

For our final example, we apply the synchrosqueezed trans-
form based canvas analysis to The Peruzzi Altarpiece by
Giotto di Bondone and his assistants. The altarpiece is in
the collection of the North Carolina Museum of Art; see
Figure 8 for the altarpiece as well as the x-ray images used
in the analysis. This is a painting on wood panel, but the
ground of traditional white gesso was applied over a coarsely
woven fabric interlayer glued to a poplar panel. We carried
out a canvas analysis on the fabric interlayer, likely a hand
woven linen cloth. The results of a canvas analysis based on
the synchrosqueezed transform are shown in Figure 10. This
example is much more challenging than the previous ones,
since the x-ray intensity contributed by the canvas is much
weaker because the ground does not contain lead; see e.g.
Figure 9, a detail of the x-ray image of the Christ panel. The
canvas is barely visible, in sharp contrast to the x-ray image in
Figure 6. All panels except the central Christ panel are cradled;
the wood texture of these cradles interferes with the canvas
pattern on the x-ray image, introducing an additional difficulty.
This difficulty is reflected in our results: e.g., the vertical
thread count for the central panel has much fewer artifacts
than those of the other panels (see Figure 10). [In future work,
we will explore carrying out a canvas analysis after signal-
processing-based virtual cradle removal – see [28].]
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(a) A sample x-ray image
 

 

(b) Spectrum of windowed Fourier
transform at one spatial location

(c) Spectrum of synchrosqueezed
transform at one spatial location

Fig. 1. (a) A sample swatch of the x-ray image. The canvas pattern is clearly recognizable with painting on top of the canvas; (b) The spectrum of the
windowed Fourier transform as a function of frequency vector at one spatial location; (c) The spectrum of the synchrosqueezed transform at the same spatial
location. After synchrosqueezing, the spectrum is much more localized. The red circles identify the peaks of the energy used to estimate local wave vectors.

Fig. 2. X-ray image of van Gogh’s painting Portrait of an Old Man with
Beard, 1885, Van Gogh Museum, Amsterdam (F205). Provided by Professor
C. Richard Johnson through the RKD dataset [26].

One interesting ongoing art investigation debate concerning
this altarpiece is the relative position of the panels of John
the Baptist and Francis of Assisi. While the order shown in
Figure 8, with Francis in the right-most position, and the
Baptist second from right, is the most commonly accepted
[29], there have been alternative arguments that the Francis
panel should be instead placed next to the central panel. We
wondered what ordering (if any) would be suggested by the
canvas analysis. Under the assumption that the pieces of canvas
are cut off consecutively from one larger piece of cloth, we
investigate which arrangement provides the best matching.
One plausible arrangement of the canvas is shown in Figure 11.
Our analysis suggests that the canvas of the central panel
should be rotated for 90 degrees clockwise to match with the
other panels. (The larger height of the central panel, possibly
exceeding the width of the cloth roll, may have necessitated
this.) Moreover, a better matching is achieved if the canvas of
the panel of the Baptist is flipped horizontally (in other words,
flipped front to back). Given our results, it seems unlikely
that the Francis-panel canvas would fit best to the left of
the Baptist-panel canvas. A better, more precise result will be
possible after virtual cradle removal. Of course, even a more
conclusive canvas roll arrangement would provide at best an
indirect hint for the relative position of the panels themselves;
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Fig. 3. The canvas analysis results of van Gogh’s F205 using the syn-
chrosqueezed transform: (a) and (b): thread count map of the horizontal and
vertical threads; (c) and (d): the estimated thread angle. Compare with [6,
Figure 6].

combined with other elements in a more exhaustive study, it
can nevertheless play a role.

V. CONCLUSION

We apply 2D synchrosqueezed transforms to quantita-
tive canvas weave analysis for art investigations. The syn-
chrosqueezed transforms offer a sharpened phase-space rep-
resentation of the x-ray image of the paintings, which yields
fine scale characterization of thread count and thread angle of
the canvas. We demonstrated the effectiveness of the method
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Fig. 4. X-ray image of Vermeer’s painting Woman in Blue Reading a Letter,
1663-64, Rijksmuseum Amsterdam, Amsterdam (L17). X-ray image provided
by Professor C. Richard Johnson through the RKD dataset [26].
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Fig. 5. Canvas analysis results of Vermeer’s L17 using the synchrosqueezed
transform: (a) and (b) are thread count map of the horizontal and vertical
threads; (c) and (d) show the estimated thread angle. Average thread density is
14.407 threads/cm (horizontal) and 14.817 threads/cm (vertical). The boxed
region of the vertical thread angle map (panel (d)) is shown, enlarged, in
Figure 6.

(a) X-ray image (zoomed-in) (b) Vertical thread angle (zoomed-in)

Fig. 6. Details of the x-ray image and the corresponding vertical thread
angle map for Vermeer’s L17, highlighting two examples (boxed regions) of
noticeable fine scale variation of the vertical thread angle, readily recognizable
also by visual inspection of the corresponding zones in the x-ray image.

(a) X-ray image (b) X-ray image (zoomed-in)
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Fig. 7. (a) X-ray image of Albert P. Ryder’s The Pasture, 1880-85, North
Carolina Museum of Art, Raleigh. The red-boxed region is enlarged in (b),
with clearly recognizable twill canvas weave. (c) and (d) show the thread
count maps correspond to the zoomed-in region shown in (b). Note the much
higher thread counts than for plain weave canvas, typical for the finer threads
used in twill weave.

on art works by van Gogh, Vermeer, and Ryder. The tool is
applied to The Peruzzi Altarpiece by Giotto and his assistants,
to provide insight into the issue of panel arrangement.
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image is a mosaic of 4 x-ray films, leading to visible boundaries of the different pieces (thin horizontal and vertical lines) on the x-ray image.
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