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1. Introduction

One of the most complex and salient questions remaining in climate change policy modeling is the
appropriate treatment of technological change (TC). The approach to modeling TC is widely considered to
be one of the most important determinants of the results of climate policy analyses; that is, the level of
emissions abatement that can be achieved at a given cost. In this context, TC can be understood as the
increase in outputs (including abatement) possible with a given level of inputs through the processes of
invention, innovation, and diffusion. Unfortunately, the complex mechanisms by which these processes
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work are not captured easily in modeling frameworks, creating significant difficulties for modelers
attempting to determine the effects of climate policies that inevitably are intertwined with TC in energy
supply and demand technologies.

In climate change policy models, endogenous technology change (ETC) implies incorporating a feedback
mechanism by which policy changes the direction of TC toward carbon-saving technology change; ETC may
also affect the overall rate of TC. This feedback occurs through channels such as energy prices, added
specification of research and development (R&D) activities, or accumulated production experience
lowering production costs (learning-by-doing). This contrasts with exogenous assumptions about the rate
of overall and carbon-saving TC, which are unresponsive to policy. This paper addresses several specific
questions. What are the major assumptions regarding TC in climate policy models and, more specifically,
how is TC made endogenous? What are the advantages and disadvantages of these approaches? And finally,
what can we learn from these approaches?

The aim is to provide guidance to climate policy modelers looking to either incorporate ETC or refine
existing ETC specification in their specific models. We find that although there is currently no single best
means to endogenize TC, some methods appear better suited to certain model types than others. For
example, approaches based on feedback through R&D activities have been profitably developed in more
highly aggregated forward-looking optimization models, such as dynamic computable general equilibrium
models and some integrated assessment models. In contrast, learning-induced approaches have been most
commonly used in disaggregated energy technology and system models. Table 1 summarizes the modeling
of TC in a sample of climate change policy models and highlights the variety of approaches in different
types of models.

The paper is organized around the common avenues of modeling TC, elucidating these approaches
in the context of specific models and examining the implications and limitations of each. Instead of a
comprehensive review of the ETC modeling literature, we restrict our review to select papers that illustrate

Table 1
Technological change characteristics in selected climate policy models

Model Type Representation of technological change Reference

SGM CGE EX MacCracken et al. (1999)
GEM-E3 CGE EX Capros et al. (1997)

PACE CGE EX Bohringer (1998)

G-CUBED CGE EX McKibbin and Wilcoxen (1993)
GREEN CGE EX Burniaux et al. (1992)

GTEM CGE PR Jakeman et al. (2004)
MIT-EPPA CGE EX/PR/LBD Jacoby et al. (2003)

Sue Wing-EPPA CGE R&D Sue Wing (2001)

SMULDERS CGE R&D Smulders and de Nooij (2003)
GOULD-SCHNDR CGE R&D Goulder and Schneider (1999)
DGEM CGE/ME EX Jorgenson and Wilcoxen (1993)
WARM CGE/ME R&D Carraro and Galeotti (1997)
E3ME ME R&D Barker and Kohler (1998)
PIZER CGE/IAM EX Pizer (1999)

MACRO CGE/IAM EX Manne and Richels (1992)
DICE/RICE 1AM EX Nordhaus (1994)

IMAGE 1AM EX/PR Alcamo et al. (1998)

ICAM3 IAM LBD/PR Dowlatabadi (1998)

ETC-RICE IAM R&D Buonanno et al. (2003)
R&DICE 1AM R&D Nordhaus (2002)

NEMS ES EX/PR/LBD EIA (2003)

MARKAL ES LBD Barreto and Kypreos (1999)
MESSAGE ES LBD Griibler and Messner (1998)
POLES ES LBD Kouvaritakis et al. (2000)
GOULD-MATHAI CF LBD/R&D Goulder and Mathai (2000)
Acronyms:

Models: CGE, computable general-equilibrium model; ME, macroeconometric model; IAM, integrated assessment model; ES,
disaggregated energy technology and system model; CF, cost-function model.

Technological Change: EX (exogenous); PR (price-induced); LBD (learning-by-doing); R&D (research and development).
Source: Grubb et al. (2002); Loschel (2002); and authors.
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key concepts and provide insight into the theoretical basis for ETC modeling methodology.! The paper is
organized as follows. Section 2 discusses the fundamental differences between exogenous TC and ETC.
Section 3 describes the simplest method of endogenizing TC: direct price-induced ETC. Section 4 examines
R&D-induced ETC and Section 5 addresses learning-induced ETC. Section 6 brings together our conclusions
with a discussion of the implications of the choice of ETC modeling structure for climate change policy-
modeling results.

2. Exogenous or endogenous technological change?

Until recently, the most widespread method of treating TC in climate policy modeling was to consider it
an exogenous variable—simply an autonomous function of time. The fundamental distinction between
exogenous TC and ETC is that with exogenous TC production possibilities depend only on time, whereas
with ETC, these possibilities can depend in a variety of ways on past, present, and/or future expected prices
and policy. Thus, with ETC current technological possibilities for producing output with various
combinations of capital, labor, and emission limits depend on past activities. In turn, there is a dependence
of future technological possibilities on current actions. The remainder of this section provides an overview
of how to conceptualize exogenous TC versus ETC in climate policy models.

2.1. Exogenous technological change

There are several different ways that climate policy modelers have incorporated TC even when it is only
a function of time. The simplest approach to TC is to assume that a Hicks-neutral productivity gain governs
the overall progress of the economy. However, this approach does not capture the potential for TC to
proceed in an energy-saving (or energy-using) manner. An easy modification that reflects an energy-saving
direction to productivity improvements—within either the economy as a whole, or an individual sector—is
to include an autonomous energy-efficiency improvement (AEEI) parameter, which increases the energy-
efficiency of the economy by some exogenous amount each year. The use of an AEEI parameter is
particularly common in more aggregated models (e.g., MacCracken et al., 1999; Nordhaus, 1994). In more
disaggregated models, overall energy-saving progress can also be implemented by Hicks-neutral
productivity gains in a more energy-efficient sector or technology, or by adding a new energy-efficient
technology to the menu of available technologies at a given point in time. Autonomous energy-efficiency
improvement has the primary advantage of simplicity and transparency, and in addition reduces the risk of
model nonlinearities, multiple equilibria, and permits ready sensitivity analysis with different AEEI values.?

In a similar vein, the use of backstop technologies can also be thought of as a form of exogenous TC.
Backstop technologies are typically carbon-free energy sources that may be already known, but are not yet
commercialized widely. It often is assumed that such a backstop technology is available in a virtually
unlimited supply at a constant, but relatively high, marginal cost. If the price of energy inclusive of carbon
policy becomes high enough, the backstop technology will penetrate the market and prevent the price of
energy from rising further.> Modelers often assume that the cost of the backstop technology is decreasing
with time at its own autonomous rate—effectively implying that if the backstop comes into effect, then
technology is improving solely as a function of time. Some models have more than one backstop
technology, such as the GREEN model (Burniaux et al., 1992). Examples that others have given of backstop
technologies include advanced solar power, nuclear fusion, and possibly renewable transportation fuels
and advanced fossil-fuel generation technologies such as shale oil (Loschel, 2002).

T For surveys of the literature and other overviews of modeling methodology, see Loschel (2002), Clarke and Weyant (2002),
Grubb et al. (2002), Azar and Dowlatabadi (1999), Griibler et al. (1999), Goulder (2004), Weyant (2004), Vollebergh and Kemfert
(2005), Edenhofer et al. (2006), Kohler et al. (2006), Popp (2006a,b), Sue Wing and Popp (2006), Sue Wing (2006); Weyant and
Olavson (1999); and Edmonds et al. (2000).

2 While models with exogenous TC cannot capture directly the responsiveness of technology to climate policies, they can employ
sensitivity analysis to evaluate how modeling results would be influenced if the AEEI, Hicks neutral gains in a more energy efficient
sector, or the timing of a new energy efficient technology, evolved differently under alternative policy scenarios.

3 For this reason, some authors have referred to backstop technologies as “semi-endogenous” because when the backstop enters
force is a function of the energy price, which is endogenous (Sue Wing, 2006).
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Finally, in some econometric models with flexible functional forms there may be multiple trends
determining the overall level and direction of technological change. For example, Jorgenson and Wilcoxen
(1993) include five parameters describing technological change—two describing the overall level (¢, and
Br:) and three describing the direction (the vector By, or factor biases):

InC; = ap + Inptoy + o g(t) + 0.5Inpt f,pInpe + Inpt B, (t) + 0.58,8%(t), (1)

where C; is unit cost, p; is a vector of input prices, g(t) is a time trend, and the as and (3s are parameters.
Here, overall productivity growth is given by the negative derivative of this expression with respect to time,
or

B alnCt
ot

= — (o + Inpt By + Pug(L))g (1) (2)

The presence of prices in Eq. (2) leads some to view this as a model of price-induced TC. However, it is
useful to note that the actual cost function (1) at a given point in time does not depend at all on historic
prices or other variables—today's production possibilities depend on the passage of time only. Thus, even
though the observed rate of TC appears endogenous, the underlying technology possibilities are not, so this
formulation effectively represents a form of exogenous TC. Put another way, while the movement of the
production frontier is purely exogenous, the summary “rate of technological change” depends on where
along the frontier progress is measured and, therefore, is sensitive to prices.

2.2. Endogenous technological change

While modeling TC exogenously simplifies the modeling of TC, there is a wide literature acknowledging
that TC is a complex process that is dependent on more than just the passage of time. This implies that the
cost function (1), for example, depends not just on time and current prices, but also on historic indica-
tors of prices and activity. Note that the vector of cost shares from Eq. (1), given by Sheperd's lemma, is z;=
0+ Bppln pe+ Bpg(t). An ETC version of this would replace the trend in cost shares (i.e., the direction or
input-bias of technological change), 3,:g(t), now governed only by the passage of time, with a more
complex function of historic prices and/or economic activity. This view has motivated considerable work on
the processes by which historic prices (and policies) influence today's production possibilities (e.g., see
Oravetz and Dowlatabadi, 1995; Newell et al,, 1999; Jaffe et al,, 2003; Grubb et al.,, 2002; Azar and
Dowlatabadi, 1999).# In particular, some of these studies criticize the use of AEEI as neglecting the causes
that affect the evolution of technologies, leading to distorted and inappropriate model results.> Moreover,
other studies, such as Oravetz and Dowlatabadi, emphasize that modeling TC using AEEI is not entirely
consistent with empirical evidence.

Another variant is to summarize the influence of historic prices and activity in terms of an unobserved
“knowledge stock” that governs overall level and direction (i.e., input-bias) of technological change. The
difficulty lies in determining exactly how this stock accumulates and affects future energy use and
emissions. Empirical evidence suggests that prices, R&D, and learning through past experience all play
some role in the accumulation of this stock, yet there is no single structural theory that addresses exactly
how this occurs, and hence, how each influences future production possibilities. Recent empirical studies
have been more successful in isolating the effect on future energy use and emissions of inputs to innovation
such as R&D (e.g., Fisher-Vanden et al., 2006, 2004), outputs from innovation such as patents (e.g., Popp,
2001), and direct price-induced accumulation of energy-saving knowledge (e.g., Sue Wing, 2008b). Viewed
in the context of Jorgenson and Wilcoxen's (1993) expression for input-biased technological change, these
studies offer a rich view of the potential dependence of [3,.g(t) on past prices and activity.

An important element of incorporating ETC is whether one assumes the reference case behavior, in turn
based on historic behavior, is roughly optimal. One line of reasoning is that TC represents a constraint that,

4 This extensive literature of EETC includes an edited book (Griibler et al., 2002), and four special journal issues (Resource and
Energy Economics, 2003, vol, 25; Energy Economics, 2004, vol. 26; Ecological Economics, 2005, vol. 54; and The Energy Journal, 2006).

> This is related to the Lucas (1976) critique in that AEEI is not a “deep” structural parameter and it is unlikely to remain stable as
policymakers change their behavior.
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when relaxed, yields lower costs for reducing emissions. A number of studies find this result when ETC is
coupled with the possibility that TC is undersupplied due to innovation market imperfections (Grubb et al.,
2002). In contrast, other studies implicitly or explicitly assume that TC in the base case is (roughly) optimal;
therefore, allowing it to change in response to policy changes might not affect mitigation costs very much if
other relative prices do not change very much—an envelope theorem result.® These implicit assumptions
about the optimality of TC in the base case often confound comparisons of the implications of different
approaches for endogenizing TC.

Finally, it is important to note that the development of alternatives to exogenous TC has also been driven
in part by the demand from policymakers for normative (“what is better”) analyses of climate change
policies that appropriately model technological change. However, the line between positive (“what
happens if”) and normative analysis often is blurred in many studies that include ETC, despite the different
requirements of each. This blurring arises, in part, because the literature indicates that important positive
questions have yet to be answered unequivocally. Among these is the basic question of exactly what drives
technological change and, therefore, what ETC ought to capture and why. Unfortunately, this blurring may
have led to the premature use of ETC modeling efforts in statements about the likely cost and timing of CO,
mitigation efforts.

Although difficult to categorize neatly, the most commonly used approaches model ETC in one of three
ways: direct price-induced, R&D-induced, and learning-induced. Direct price-induced TC implies that
changes in relative prices can spur innovation to reduce the use of the more expensive input (e.g., energy)
in accordance with the Hicks-induced innovation hypothesis. R&D-induced TC allows for R&D investment
to influence the rate and direction of technological change. It often involves an explicit knowledge capital
stock. There is considerable diversity in R&D-based approaches to modeling TC, which for the sake of
convenience we categorize into neoclassical growth extensions and multi-sector general-equilibrium
approaches. Model structure is the dominant factor in this further division, as different model structures
tend to lend themselves to different R&D-based endogenizing approaches. Finally, learning-induced TC
allows for the unit cost of a particular technology to be a decreasing function of the experience with that
technology. Learning-by-doing (LBD) is the most commonly employed method used in this approach,
where the unit cost of a technology is typically modeled as a decreasing function of its cumulative output.

3. Direct price-induced TC

Direct price-induced TC is a relatively straightforward method of endogenizing TC with conceptual roots
dating back to Hicks (1932), who suggested:

A change in the relative prices of the factors is itself a spur to invention and to inventions of a
particular kind—directed at economizing the use of a factor which has become relatively expensive.
(Hicks, 1932: 124-125)

Kennedy (1964) and Kamien and Schwartz (1968) build upon Hicks' induced-innovation hypothesis by
developing the concept of the innovation-possibility frontier (IPF). The IPF, also known as the induced
innovation function, can be thought of as a production function for producing new knowledge that
improves the productivity of the different inputs. Thus, for any given isoquant of the IPF, there is a tradeoff
between improving productivity of one input versus the others. In the context of Eq. (1) and the derived
input cost shares, this highlights that a reduction in one input cost share (e.g., energy) implies increases in
the others (e.g., capital and/or labor). This provides a mechanism for changes in relative prices to induce
innovation more in the direction of a particular input.

The theory of induced innovation has a solid empirical foundation and is widely recognized as an
important consideration in the understanding of TC (Ruttan, 2002). The empirical evidence has been
bolstered further recently with studies such as Newell et al. (1999), who find that historical energy-price
increases account for one-quarter to one-half of the observed improvements in energy efficiency for a
sample of consumer durables from 1958 to 1993. Popp (2002) finds that patenting in energy-related fields

6 Such results include Nordhaus (2002), Goulder and Schneider (1999), Goulder and Mathai (2000), Sue Wing (2003), and
Smulders and de Nooij (2003).
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increases in response to increased energy prices. Popp (2005, 2006b) extracts some of the most important
findings about the interaction between technological change and environmental policy from the empirical
literature: innovation responds to incentives, innovation within a field experiences diminishing returns
over time, exogenous TC does not capture the nature of TC, and the social return to environmental research
is high. We will see these concepts in play in the climate models discussed in the subsequent sections.

In the context of climate policy modeling, if the price of energy rises, price-induced TC will lead to
greater energy efficiency, often through a productivity parameter that is tied to historic prices (or whose
change is tied to current prices) or through earlier diffusion of energy-efficient technologies. The exact
pathway through which this occurs depends greatly on the model structure. There are only a few examples
of direct price-induced TC used in climate policy models due to the somewhat ad hoc, reduced-form nature
of specifying the relationship between price and TC. In particular, there is no accounting for the cost of
achieving these changes. It is most common for models that use price-induced TC to use an AEEI parameter
or a LBD approach as well, as will be discussed in more detail in section five.

Perhaps the most faithful representation of price-induced TC through the use of the IPF is Jakeman et al.
(2004). Jakeman et al. assume a fixed amount of technological change in each region and time period,
which is allocated across inputs to all industries according to the relative prices of the inputs. In this case,
including price-induced TC reduces the cost of meeting carbon mitigation targets.

In the ICAM3 model, the expectation that the price of energy will rise induces TC, as does LBD
(Dowlatabadi, 1998). In the U.S. Energy Information Administration's NEMS model, price-induced TC is
included in several modules, including the residential and commercial modules, while LBD is included in
others, such as the industrial and electricity modules. In the NEMS residential module, price-induced TC is
included to allow for earlier diffusion of energy-efficient technologies if fuel prices increase significantly
and remain high over a multi-year period. Specifically, this earlier diffusion is accomplished by shifting the
date of introduction into the market by up to 10 years if there is a doubling of prices from the base-year
price that holds for 3 years. The length of the shift is a function of the price in comparison to the base-year
price. The NEMS commercial module has an analogous structure for the diffusion of advanced commercial
equipment (EIA, 2003).

The empirical evidence suggests that the price-inducement form of TC does have merit as a partial
explanation; higher energy prices clearly are associated with faster improvements in energy efficiency
(Newell et al., 1999; Popp, 2002). However, the reduced-form approach largely has been passed over for the
R&D- or learning-induced TC methodologies. We now turn to those approaches in more detail.

4. R&D-induced TC

R&D-induced TC is one of the most common approaches used to endogenize TC, and a variety of models
have been developed along these lines. R&D-based TC has a long-running theoretical foundation beginning
with the early work by Kennedy (1964 ), Kamien and Schwartz (1968), and Binswanger and Ruttan (1978) in
developing the IPF and the theory behind induced TC. More recent work by Acemoglu (2002) addresses
how the tradeoff between innovation in different directions inherent in the IPF results endogenously from a
firm's dynamic optimization problem. Sue Wing (2006) further develops this theory in the context of
climate change policy. In a parallel vein, the endogenous-growth literature (e.g., Lucas, 1988; Romer, 1990;
Grossman and Helpman, 1994; Aghion and Howitt, 1998; Acemoglu, 1998 and Kily, 1999) suggests the
importance of including a stock of “knowledge capital” when modeling economic growth.

In the broadest sense, the stock of knowledge captures all information, skills, ideas, and experience that
determine production possibilities. It summarizes the influence of historic prices and activity on current
production. In this way, flows into the knowledge stock can represent increasing educational attainment,
increasing experience in production, and, most commonly, investments in R&D which are determined by
relative prices (Sue Wing, 2008a).

Climate policy modelers have introduced a knowledge stock in a variety of different ways. While the
theoretical basis for relative prices inducing TC in a particular direction is quite well-developed, exactly
how the knowledge stock accumulates and influences production possibilities is not completely settled in
the literature. In some models, the concept of the knowledge stock is made more concrete by using an IPF to
govern how investments in R&D increase the knowledge stock. Popp (2004) develops one such model and
discusses the use of empirical evidence to parameterize the IPF. This work, along with Popp (2002, 2003,
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2006b), further informs our understanding of the innovation process. Model structures vary in terms of
whether they permit embedding the IPF within a perpetual inventory framework for the knowledge stock,
analogous to inventory methods for standard capital stocks.

We organize our discussion to first address approaches in recent theoretical R&D models that may be
useful to inform numerical models, and then delve into numerical models that include different
representations of R&D-induced TC. While several different representations may be possible in any given
model, we arrange the discussion of numerical models based on model structure to highlight how different
processes have been successful used in different model structures and what the implications of each are.

Several themes resonate throughout the R&D model literature. Two key points are whether R&D-
induced TC is associated with an innovation market imperfection due to spillovers, and whether carbon-
saving R&D crowds out R&D in other sectors. A third point is whether there is a substitutability, as in most
papers, or complementarity between the generation of output (i.e., conventional production) and the
generation of new knowledge (i.e., innovation). These themes appear in many of the models addressed, and
will be discussed in more detail in a summary and distinctions subsection at the end of this section.

4.1. Theoretical models

The endogenous growth literature gave rise to the concept of including a stock of knowledge capital in
an economy-wide production function, a concept that has often been applied to endogenize TC in climate
policy models. Of course, including a knowledge stock does not on its own imply a pathway for inducing
carbon-saving TC. In the simple formulation of a knowledge stock that is most true to the endogenous
growth literature, the knowledge stock increases the productivity of all inputs equally.

For example, Buonanno et al. (2003) extend the Nordhaus and Yang (1996) RICE model to implement
such a knowledge stock in the ETC-RICE numerical model. Specifically, they use the following production
function for each country:

Y = AK (L'K'™), (3)

where Y is economic output, A allows for exogenous TC, Ky is knowledge capital, L is labor, K is physical
capital, and 3 and vy are parameters.” As in Nordhaus and Yang, the social planner chooses both the optimal
level of standard investment and the investment in R&D effort, where the cost of both types of investment is
subtracted from the DICE model's output balance equation.

This simple methodology for endogenizing TC may be useful to capture important aggregate dynamics,
but it leaves no pathway for relative prices to influence energy-saving or carbon-saving innovation.? Many
numerical models include a factor-augmenting knowledge stock to represent such a pathway. Sue Wing
(2003) provides one such example, which is discussed in detail under numerical models. But first, we will
discuss two recent theoretical approaches that model endogenous growth by changes in a continuum of
intermediate goods. These approaches provide some insight for numerical models and may help guide
future numerical modeling.

Smulders and de Nooij (2003) and van Zon and Yetkiner (2003) both build on the endogenous growth
literature that includes a continuum of intermediate goods (e.g., Romer, 1990) and apply a variation of this
modeling approach to an economy that includes energy as an input to production. In Smulders and de
Nooij, endogenous TC is achieved by improvements in the quality of the continuum of intermediate goods
through investment in R&D, while van Zon and Yetkiner achieve endogenous TC through increases in the
variety of the continuum of intermediate goods through R&D investment. Both papers demonstrate the
important theoretical point that profit maximization by innovating intermediate goods producers can give
rise to a change in the direction of TC toward energy-saving TC based on increasing energy prices or
constrained energy quantities.

7 If the elasticity of knowledge 3 is positive, this specification results in increasing returns to scale; if 3—v is positive (i.e., B+1-y>1),
it results in increasing returns to scale in non-fixed inputs. Increasing returns to scale in non-fixed inputs can lead to an unbounded
control problem and the absence of a competitive equilibrium.

8 Buonanno et al. include another pathway for relative prices to influence innovation, as will be discussed in the section on
numerical models.
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We present the structure of the Smulders and de Nooij model to provide insight into the process of
endogenous TC used. The van Zon and Yetkiner model is closer to Romer (1990) in its use of discrete
“blueprints” to achieve variety of the continuum of intermediate goods—but the underlying process of
endogenizing TC is similar.

Smulders and de Nooij begin by including a factor-augmenting knowledge stock, where final output (Y)
is modeled as a constant elasticity of substitution (CES) production function of augmented labor (L) and
augmented energy resources (E):

Y =A- ®(AL AgE), (4)

where A is exogenous Hicks-neutral TC. A; and Ag are endogenous factor augmentation technology levels
for labor and energy services respectively. They are defined for i=L, E as

1 e\ 1
A = / qik (S;k> dk, (5)
0 i

where g is the quality level of intermediate goods of type k (for capital), x;. is the use of intermediate
goods of type k for the production of type i services, S; is the use of raw input i. The number of intermediate
goods in each sector is normalized to unity. The market for intermediate goods is characterized by
monopolistic competition.

ETC is modeled in this framework by assuming that each intermediate goods producer improves the
quality of the good by investing in R&D. The rate of change in the quality of the good is given by

4y = [c@D} " |Dy, (6)

where Djy is the flow of resources spent on R&D by the firm, D; is the flow of sector-wide investment for
input i, € is a scaling parameter, ; is the share of innovation returns for intermediate good k to input i that
accrue to the inventing firm (an appropriability parameter), and Q; is the current aggregate quality level
(a proxy for a knowledge stock or level of technology). Q; is given simply as follows (for i=L,E)

1
@zﬁqu (7)

Each intermediate goods producer chooses D;, to maximize the net present value of the firm. Given this
specification, there are two innovation spillovers. The first is that each individual firm builds on the
knowledge accumulated by all firms in the sector, as given by Q;. The second is due to w representing the
share of returns to innovation that are not appropriated, implying that quality development efforts are
more productive when other firms in the sector are more active. In other words, each firm ignores how his
or her investment benefits both other firms now (through the aggregate investment term D;) and other
firms in the future (through the accumulated stock term Q;). Thus, two innovation market imperfections are
modeled in this specification.

Smulders and de Nooij's modeling framework allows for policy analysis examining the short- and long-
run growth implications of energy conservation policies but does not address questions of economic
welfare. They find that energy-conservation policy will lead to reduced net per capita income levels due to
the direct costs of the policy outweighing the offsetting effect of induced innovation. Nonetheless, the ETC
framework does reduce the cost of a policy, although non-energy R&D activities may be crowded out, with
no increase in total R&D. In fact, a theoretical result based on this model structure is that the gains from
induced innovation will never offset the initial policy-induced decline in per capita income levels, obviating
the possibility of “win-win situations.” As a general proposition, ETC should induce higher long-run
output only if spillovers are relatively high in carbon-saving innovation compared to other areas that would
otherwise receive R&D effort. This appears not to be the case in Smulders and de Nooij's model.

In contrast, van Zon and Yetkiner use a blueprint framework to find that an energy tax that is recycled in
the form of an R&D subsidy may increase long-run growth, through R&D-induced TC. This result stems from

9 This result does not hold in other model frameworks (e.g., Fischer and Newell (2008)).
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two different market imperfections in the R&D market: (1) firms do not consider the effect that current R&D
has on increasing the productivity of future R&D investment because it is not captured appropriately in the
price of the blueprints and (2) a market imperfection in the supply of intermediates that leads to too low of
a demand for those intermediates relative to the social optimum. Effectively, these market imperfections
imply an intertemporal spillover for each firm, rather than a spillover from the research of one firm to other
firms. Crowding out also plays a less prominent role in the van Zon and Yetkiner model than in Smulders
and de Nooij.

4.2. Numerical models

Unfortunately, theoretical models with continuous intermediate goods and abstract representations of
blueprints are not well-suited to match up to measurable real-world variables or technologies that most
numerical models attempt to represent. However, the more general notion of including a Hicks-neutral
knowledge stock, as shown above in Buonanno et al. (2003) or factor-augmenting knowledge stock, as in
Smulders and de Nooij (2003), is a common choice for numerical models that include an economy-wide
production function. Popp (2004, 2006a) provides a good example of this approach in an economy-wide
production function. However, recent models have also used a knowledge stock to determine the green-
house gas intensity ratio, in an economy-wide abatement cost function, and in multi-sector general
equilibrium models. The modeling of spillovers and crowding out continue to play a crucial role in
determining the implications of the different processes for endogenizing TC.

4.2.1. Knowledge in greenhouse gas-intensity ratios

In the original Nordhaus (1994) DICE model, carbon intensity is affected by the substitution of capital
and labor for carbon energy. This is modified in the R&DICE model in Nordhaus (2002), so that carbon
intensity is determined by an IPF, which takes the form:

(;'t/O't: 'P]R;Ilz —'113, (8)

where 0o, is the industrial carbon energy/output ratio at year t (implying 0'/0; is the rate of change of the
carbon energy-output ratio), R; is the R&D inputs into the carbon-energy sector in year t, and the ; are
parameters (calibrated assuming optimized R&D in the past). Emissions in R&DICE are a function of the
exogenously determined output and the endogenous carbon-output ratio o.

The cost of investing in knowledge through R&D is subtracted from consumption in the DICE model's
output balance equation, analogous to conventional investment. In the case of R&D investment, however,
the cost of research is multiplied by four to reflect a generic innovation market imperfection; that is, that
the social opportunity cost of R&D exceeds its private cost due to crowding out. By implication, in equi-
librium the rate of return to carbon energy R&D also exceeds the return to ordinary standard investment by a
factor of four in the base case.

Nordhaus (2002) compares this ETC specification with the specification in DICE (where carbon intensity
only is affected by mitigation efforts substituting abatement for consumption). His primary conclusion is
that induced innovation is likely to be less powerful of a factor in reducing emissions than substitution. This
result is related directly to the calibration that assumes the returns to R&D equal the opportunity costs,
allowing crowding out to have an important effect.

Returning to the ETC-RICE model, Buonanno et al. (2003) provide a different variation on Nordhaus'
approach by making emission intensity a function of the knowledge stock Ky also used in Eq. (3). They term
this “induced TC” and their formulation is

o= ot (1 ), )
where E is emissions, Y is output, « is the elasticity by which knowledge reduces the E/Y ratio, o is an
exogenous parameter describing the value to which the E/Y ratio tends to asymptotically as the stock of
knowledge increases, X is a scaling coefficient, and ptis the rate of abatement effort. A positive value for the
scaling coefficient x indicates that R&D efforts will result in emissions-saving TC. The knowledge stock
accumulates one-to-one with R&D investment and depreciates at an exogenous rate. Importantly, there is
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no potential for climate-friendly R&D to compete with or crowd out other, aggregate R&D—this knowledge
stock is exactly the same variable that influences overall productivity.

Buonanno et al. also incorporate ETC in third way, where they allow for spillovers from an international
knowledge stock of R&D to other regions' productivity (modeled by an additional spillover term of K3,
equal to the sum of knowledge in other regions, multiplied by the left-hand side in Eq. (3)).

An interesting result is that the total cost of achieving Kyoto targets rises when “induced TC” is modeled
versus “endogenous TC” (Eq. (3)) only and rises again when international spillovers are added. This result
seems surprising since we tend to expect that additional avenues (such as domestic or foreign R&D) to
mitigate could only lower costs, and so presumably arises from their calibration. In particular, when they
insert the induced technological change specification, it does not necessarily match the endogenous TC-
only run with knowledge held fixed—the parameters are based on an OLS fit. Similarly, the production
parameters are changed when international spillovers are included. In the latter case, a parameterization
that—other things equal—meant less appropriability would, in fact, decrease R&D.

4.2.2. Knowledge in abatement cost functions

Some model structures are based on an economy-wide carbon-abatement cost function, rather than on
a production function. While an abatement cost function can be derived from the production function
approach, directly modeling the abatement cost function lends itself to slightly different approaches to ETC.

Goulder and Mathai (2000) create a set of optimizing equilibrium models with knowledge accumulation
that directly reduces abatement costs. One set of models uses a cost-effectiveness criterion and solves for
the time path of abatement and R&D investment to minimize the present value abatement costs of
achieving a concentration target under different TC assumptions. The second set of models uses a cost-
benefit criterion and solves for the time path of abatement and R&D investment that minimizes present
value social costs (including climate damages) under different TC assumptions.

Into each of these frameworks, they separately incorporate both R&D and LBD, which govern the rate of
knowledge accumulation; the LBD specification will be discussed in Section 5. All innovation market
imperfections are assumed to have been corrected already by public policy, so there is no appropriability
problem in the model.

In the cost-effectiveness R&D-based model, the social planner's objective function covers each time
period t from the present into the infinite future, as follows

zrtl%r[l/o (C(a¢,He) + p(Re)Rr)edt, (10)

where ((-) is the cost function, a, is the level of abatement at time t, H, is the stock of knowledge, p(-) is the

real price of investment resources, and R, is investment in knowledge (i.e., R&D expenditure). This

minimization problem is subject to a constraint governing the change in the concentration of CO, in the

atmosphere (the concentration target), as well as a constraint governing the change in the knowledge stock.
In this second constraint, the accumulation of knowledge (H;) is given by

HtZO([Ht—i-'I/(Rt,Ht), (11)

where « is the rate of autonomous TC (an AEEI term), and W is the knowledge accumulation function. The
initial knowledge stock (Hp) is initialized to unity. Goulder and Mathai also assume that the knowledge
accumulation function V¥ has the following properties: W(-)>0, Wg(-)>0, and Wy(-)<0.

In this formulation, R&D investment increases the knowledge stock and thereby reduces future
abatement costs. On the other hand, R&D investment also adds to the costs that the social planner is
attempting to minimize. A key theoretical result out of the cost-effectiveness framework is that the
presence of R&D-induced TC implies a reduction in near-term abatement and an increase in later
abatement (i.e., a “steeper” optimal time path of abatement), a result that contrasts with claims (typically
driven by assumptions about learning, discussed later) that endogenizing TC should lead to more
aggressive near-term action. Under both frameworks, Goulder and Mathai also find that including R&D in
their model formulation lowers the time path of the carbon tax, since the carbon tax is relatively more
effective in reducing emissions with ETC than without. At the same time, in the cost-benefit framework
this implies a higher overall optimal level of abatement, since emissions reductions relatively are less
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expensive. Similarly, it implies higher overall welfare for society (i.e., lower overall costs, including climate
damages).

4.2.3. Knowledge in multi-sector general equilibrium approaches

Multi-sector general equilibrium models differ from the previous approaches in that the economy is
disaggregated into distinct sectors and the economic activity within and between sectors is modeled. The
strength of the approach is that it may provide additional insights on the effects of interactions between
sectors, such as spillovers—or crowding out—from R&D. The cost is that general equilibrium models tend to
be data intensive and computationally demanding. We focus here on approaches that include explicit
ETC."°

Just as in several of the models discussed above, some general equilibrium models explicitly endogenize
TC through the inclusion of knowledge capital in the production function, albeit at a sectoral level, rather
than economy-wide. One notable example is Goulder and Schneider (1999). Goulder and Schneider
develop a partial equilibrium analytical framework and then implement some of the resulting insights in a
numerical general equilibrium model that endogenizes TC, with a particular emphasis on spillover effects.

Specifically, in their general equilibrium model, Goulder and Schneider divide the knowledge stock
into appropriable knowledge (H) and non-excludable knowledge (H). The non-excludable knowledge
represents the spillover knowledge enjoyed by all firms in each industry (but not across industries). A
scaling factor, y(H), is then used to determine the effect of H on output in the CES production function for a
representative firm in each industry:

Y = 'y(ﬁ) (P + 0GPV (12)

where Y is output, G is an aggregate of all other production inputs (labor, ordinary capital, and several
intermediate inputs), and the as and p are parameters. There are four intermediate goods industries
(conventional energy, alternative energy, energy-intensive materials, and other materials), and three
industries that produce final goods or services (new physical capital investment, R&D service goods, and
general consumption goods). The scaling factor y(H) is an increasing function of non-excludable
knowledge that levels off to a constant in the long run in order to allow for steady-state growth. Note
that this production function implies that for each representative firm, R&D will influence output both
through the firm's input of appropriable knowledge and the spillovers from non-excludable knowledge
generated in the industry.

In particular, Goulder and Schneider assume that appropriable knowledge capital accumulates linearly
with R&D expenditure:

Hii1 = He + ¢R;, (13)

where R, is the real expenditure on R&D at time t,'' and ¢ is a constant governing the rate at which R&D
services increase the appropriable knowledge stock. Note that this specification implies that appropriable
knowledge capital does not depreciate (a departure from how the physical capital stock is treated). Goulder
and Schneider find that the qualitative results do not depend greatly on the specification in Eq. (13) but
rather depend on the initial differences across industries in the marginal social returns to R&D due to
asymmetries in both spillovers and the tax treatment of R&D.

Spillovers derived from the production of non-excludable knowledge H are a critical component driving
the model results, as can be seen by the scaling factor y(H) in the firm's production function in Eq. (12).
Non-excludable knowledge is assumed to accumulate in the same manner as appropriable knowledge

ﬁt+1 :Et+ﬁ§t, (14)

10 This is in contrast to macroeconometric approaches, such as Carraro and Galeotti (1997). Carraro and Galeotti decompose capital
into “energy-saving” or “energy consuming” stocks, with the idea that policies affect the incentives of firms to invest in R&D in each of
these types of capital. Carraro and Galeotti infer technical progress econometrically by examining the dynamics of other variables.
Specifically, a latent variable structural equation is used to extract information about TC without having an exact representation of TC.

' Goulder and Schneider (1999) assume a single representative firm for each industry, so R, is also the industry-wide expenditure
on R&D at time t.
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where R, is the industry-wide expenditure on R&D at time t (R.=R; due to the single representative firm),
and (3 is a parameter governing the magnitude of potential spillovers (3=0 represents the case of no
spillovers). Firms are assumed to have perfect foresight and make investment decisions in physical capital
and R&D to maximize the present value of the firm. Model runs are made with different assumptions about
pre-existing distortions in the R&D market, which depend on the array and magnitude of knowledge
spillovers (e.g., value of 3 in different industries), as well as the industrial allocation and scope of prior
subsidies to R&D. Goulder and Schneider apply the model to assess the consequences of carbon tax and R&D
subsidy policies with and without these prior distortions.

Goulder and Schneider find that the presence of ETC in their model leads to lower costs of achieving a
given abatement target, but higher gross costs of a given carbon tax (i.e., costs before netting out climate
benefits). In fact, both costs and benefits of a given carbon tax are higher relative to their model with only
exogenous TC (where H is exogenous and 3=0), due to more extensive carbon abatement, for the economy
responds more elastically to price shocks from the policy. With environmental benefits included, Goulder
and Schneider find greater net benefits of this higher abatement level for a given carbon tax when ETC is
present. This outcome can be reinforced or muted if there are prior distortions in R&D markets, depending
on the type of distortions.

One important feature underlying these results is a crowding out effect where expansion of knowledge
generation in one sector comes at a cost to other sectors due to the limited pool of knowledge-generating
resources (i.e., there is a positive and increasing opportunity cost to R&D in one sector). A carbon-tax policy
serves to spur R&D in the alternative energy sector, but discourages R&D in non-energy and conventional
energy sectors due both to slower growth of output in those industries and the limited pool of knowledge-
generating resources.'?

On the other hand, the knowledge spillover effects, whereby policy-induced R&D has social returns
above private returns, provide additional benefits from a climate policy above the environmental benefits.
However, the presence of ETC with spillovers does not imply the possibility of zero-cost carbon abatement,
unless the spillovers overwhelm the crowding out effect, a largely empirical question. In a separate model
run, Goulder and Schneider find that private R&D subsidies only play a role when TC is endogenous, and
their effect is found to be contingent on the size of the knowledge spillovers (the 3 parameter), as one
would expect.

Sue Wing (2003) incorporates ETC into a detailed general equilibrium model, building on several of the
concepts in Goulder and Schneider (1999) and some of the other papers discussed above. At the core of Sue
Wing's model is a recursive, dynamic general equilibrium model in which a representative agent
maximizes welfare. Producing industries maximize profits subject to the technologies of production and
consumption, the economy's endowments of primary factors and natural resources, and existing taxes and
distortions. The agent leases the services of the endowed factors of production to the industries to produce
commodities, which provides the income used to pay for consumption, investment, and R&D.

A major difference between Sue Wing's model and previous models is that Sue Wing further
distinguishes several of the factors influencing innovation to gain insight into the general equilibrium
effects of inducing innovation in one sector and its consequences for the cost of carbon policies. Con-
ceptually, Sue Wing describes his approach in terms of two commodities: a “clean” commodity and a
“dirty” commodity. There is one industry for each, and both commodities are used as input to production.
Each industry i has a production function at time t given by

Yi(t) = ¢[vi(t), yi(D)], (15)

where Y{(t) is each industry's output after adjustment for knowledge services, ¢ is a nested CES function, v;
(t) reflects “intangible knowledge services,” and y; is each industry's nested CES production function (in
terms of intermediate goods and other factors of production). Technical change is the effect of v;(t) on each
industry's production function (shifting the envelope of possibilities for substituting clean inputs for dirty

12 Goulder and Schneider (1999) model the entire pool of knowledge-generating resources as inelastic, but in the long run it may
be more elastic, for example through increases in the pool of R&D labor.
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inputs). Intangible knowledge services allocated to each industry, v,(t), are modeled as a function of the rate
of return to R&D investment (also a function of the prices of output in a given sector), as follows

vi(t) = 9 (pi() HD), (16)

where pj(t) is the price of output from each industry, and H(t) is the aggregate knowledge stock over all
industries. The function 9 is assumed to be increasing with both prices and the knowledge stock. This
formulation allows for the inter-sectoral distribution of knowledge services to be shifted by changing
relative prices, even if the stock of knowledge remains constant. The aggregate knowledge stock ac-
cumulates over time as a function of economy-wide R&D investment:

H(t) = w(R(t),ﬁ(t)), (17)

where R(t) is the economy-wide R&D investment. The function @ is assumed to be increasing with R(t) and
decreasing with H(t), implying diminishing returns to knowledge. Finally, R&D investment is determined
by a fixed marginal propensity to save and the relative cost of tangible and intangible investment.

Using this formulation of ETC within a numerical general equilibrium model, Sue Wing (2003) finds that
a carbon tax reduces aggregate R&D, slowing the rate of TC and the growth in output. Given the fixed-saving
rule and absence of knowledge spillovers, this follows from having a smaller economy due to the carbon
tax. However, the relative price effects of a carbon tax lead to considerable reallocation of knowledge
services, enabling the economy to adjust to the carbon tax in a more elastic manner, reducing the total costs
of the carbon tax. Sue Wing finds that this effect of ETC is substantial due to shifting of knowledge services.

4.3. Summary and distinctions

This overview of approaches to modeling R&D-induced TC, while by no means comprehensive, captures
the pathways through which TC has been endogenized as a function of R&D. Other recent studies with
explicit R&D-induced TC include Bollen et al. (2004 ), Schneider and Goulder (1997), and Grubb et al. (1995).

Given the great diversity of model structures with R&D-induced TC, some important distinctions are
warranted to clarify the approaches and explain certain implications of the modeling methodologies. First,
it is important whether R&D activity is assumed to be optimal in the calibrated base case or whether it is
subject to distortions. The models above differ in whether there are prior distortions in the R&D market,
what type of distortions these are, and the potential for policy interventions to partially correct or
exacerbate the distortions with corresponding welfare benefits and costs.

It also can be important whether there is a substitution or complementarity between the generation of
output and knowledge, as is shown most clearly in Buonanno et al. (2003). Nearly all of the other studies in
question have some mechanism where the generation of output substitutes for the generation of
knowledge, implying a larger role for crowding out and less opportunity for gains from ETC. Buonanno et
al.,, with an emphasis on complementarity between energy-saving R&D and aggregate productivity R&D
(they use the same knowledge), embed more opportunity for increased energy-saving R&D to at the same
time boost overall productivity.

Related to this issue is the important difference among models in the elasticity of the supply, or
opportunity cost, of additional R&D. If there is a relatively inelastic supply of R&D (e.g., capable engineers
and scientists), more effort on climate mitigation R&D reduces the ability of other firms or sectors to
perform R&D, effectively crowding out R&D activity. This R&D crowding out behavior is evident in several
models, where a subsidy or tax policy that induces energy-saving R&D will decrease R&D in other sectors of
the economy, potentially decreasing aggregate economic output (e.g., Nordhaus, 2002; Goulder and
Schneider, 1999; Sue Wing, 2003). This implies that the cost of a carbon constraint could be more or less
costly with the inclusion of ETC (versus presumptively leading to lower costs).

In addition to crowding out, there are spillover effects, or the degree to which R&D by any specific sector
or firm is appropriable (Clarke and Weyant, 2002). In other words, it is the degree to which firms, in
equilibrium, fail to capture the full benefits of their R&D investment outside of the firm. This divergence
between private and social returns to R&D can imply a relatively high social return to R&D. If a firm can
successfully appropriate most of the gains from R&D expenditure, it will have more incentive to undertake
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R&D and the social returns of that R&D will converge with the private returns. On the other hand, if firms
appropriate less of the profits of their R&D, they will be less likely to undertake R&D and the R&D they do
undertake will have high social returns due to unappropriated spillover effects.

With significant spillovers, we have a preexisting market imperfection (i.e., social returns above private
returns) that may be partially corrected by an emissions policy and more directly corrected by an R&D
policy. Spillovers have been used in various ways in the papers described above, but in nearly all cases, more
spillovers tend to imply a lower cost of achieving a given carbon constraint due to a partial correction of the
R&D market imperfection.

There clearly exists a tension between spillovers and crowding out, with the former pointing to greater
cost savings when ETC is included and the latter dampening or even overturning that effect. In many
models, the degree to which spillovers and crowding out arise is a complex interaction among underlying
assumptions about model structure and distortions in the R&D market. Yet, these assumptions have
important ramifications for the total cost of a climate policy as well as the conclusions drawn about the
degree to which previous estimates based on exogenous technology assumptions are biased.

Whether models are couched in terms of spillovers or appropriability, it is important to keep in mind
that R&D market imperfections generally are hard to correct. A recent paper by Otto et al. (2006) points out
that while a climate policy focused in part on technological change can have lower costs than one only
focused on mitigation, a policy that solved the general R&D market imperfection would provide large
benefits. However, such policies are hard to come by in practice.

Regardless, the relative price of energy clearly has a role in influencing the direction of TC even if effects on
the overall level of R&D are limited, and even if the effect on costs is ambiguous."® Higher prices of inputs to
production create an incentive to improve technology to economize on the use of such inputs. In the case of
energy, this would imply that a carbon policy encourages R&D investment directed at lowering the costs of
such a policy. For example, Sue Wing (2003) hypothesizes that relative prices affect how the “knowledge
services” from the knowledge capital are allocated throughout the economy. This concept of ETC has strong
implications for the way innovation is reallocated under a carbon policy as firms attempt to reduce policy costs.

5. Learning-induced TC

Learning-induced TC approaches tend to be quite different than R&D-induced approaches. In this
section, the history and concepts behind learning will be discussed first, followed by a discussion of some
approaches.

A long-recognized concept, technological learning first was quantified by Wright (1936) for the aircraft
industry. He noted that unit labor costs in airframe manufacturing declined with accumulated experience,
as measured by cumulative output. In economics, the concept is often described as learning-by-doing
(LBD), and generally is defined as the decrease in costs to manufacturers as a function of cumulative output,
or “learning-by-using,” and the decrease in costs (and/or increase in benefits) to consumers as a function of
the use of a technology (Arrow, 1962; Rosenberg, 1982)."* LBD commonly is measured in the form of
“learning” or “experience” curves in terms of how much unit costs decline as a function of experience or
production. Frequently, such curves are estimated in log-log form.

Historically, learning curves have been observed in many industries and are a well-established empirical
concept (Azar and Dowlatabadi, 1999; Griibler et al., 1999; Loschel, 2002). They implicitly take into account
in a reduced form all the parameters that influence the total costs of a product as it moves through the
development stages toward becoming a mature technology. These parameters include those that govern
production improvements, product development, and decreases in process input costs (Neij, 1997).
Learning curves have the advantage of employing an empirically quantifiable concept to allow current
prices and activity to influence future technology possibilities in a relatively straightforward manner.

Learning by its very nature is a self-reinforcing process: the more experience that is accumulated with
one technology, the lower its cost and the more competitive the technology is, leading to even more

13 It potentially also could boost the rate of productivity growth (e.g., Jorgenson and Wilcoxen 1993), but absent a market
imperfection in the model (whether explicit or implicit), this should not increase welfare.

4 Note that “learning-by-searching” (based on cumulative R&D expenditures) also has been used in the literature, but it is
essentially R&D-induced TC (see, e.g., Bahn and Kypreos (2003)).
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accumulated experience relative to other choices. In this manner, including learning curves in models can
induce path dependencies that could lead to “lock-in” of a particular technology pathway (Clarke and
Weyant, 2002). This self-reinforcing process has been described as a “virtuous cycle” when applied to
carbon-saving technologies (Grubb, 1997).

The primary disadvantage to learning-induced TC is its reduced-form nature. LBD can be inserted
mechanically into many models, but it is difficult to identify the mechanisms behind LBD—or even be
confident about the causality. Learning-induced TC does not have a theoretical structure analogous to the
IPF on which R&D-induced TC is based. The ease with which learning curves can be estimated may give a
false sense of comfort and precision that may belie the R&D or other resources that went into the
technology development (Clarke and Weyant, 2002). For instance, it may be that the part of the underlying
force driving learning curves is R&D, through the following scenario: when production costs drop, the
potential competitiveness of the product increases, increasing the rate of return on additional R&D,
inducing more R&D, which lowers the costs further and at the same time spurs more production. In this
case, there are unaccounted for R&D costs that a reduced-form LBD approach does not capture. There is the
further issue of reduced learning in technologies that experience lower production due to policy (e.g.,
certain fossil fuel technologies); this lost learning represents an opportunity cost.

Sue Wing (2001) expresses two additional reservations about learning-induced TC. First, he finds a lack
of empirical data on the relative rates of learning in several advanced energy technologies, making model
parameterization difficult. Second, he sees a disregard for the general equilibrium effects of learning-
induced productivity improvements that may influence final results in models that include learning. For
instance, if there is LBD in carbon-free energy technologies, lower costs will lead to increased demand and a
shift from carbon-intensive energy technologies. This would tend to lower the demand for carbon-
intensive energy technologies, lowering their price (if supply is upward sloping) and changing the relative
price ratio between carbon-free and carbon-intensive energy so that it is less favorable than it once was.
This would serve to slow the market penetration of carbon-free energy technologies.

5.1. Specific approaches

Despite its disadvantages, the tractability of learning curves has led to the use of learning-induced TC
throughout the literature, particularly in disaggregated “bottom-up” models. Disaggregated models are
well-suited for incorporating learning because of their rich technology specificity, which easily lends itself
to a learning curve for each technology. Some more aggregated models also use learning, but it is not as
common. One reason is that learning tends to be thought of as a technology-specific phenomenon and
therefore is harder to apply in the typical aggregation of a “top-down” model.

The most common way to capture learning-induced TC in climate policy models is based on an
exponential relation between unit cost and cumulative output:

C(Ky) = oK, ", (18)

where C is the unit cost of a technology, K; is the cumulative installed capacity (or cumulative output), ¢ is
the cost of the first unit (a normalization parameter), and 3 is the learning elasticity. This implies that a
doubling of experience will reduce specific costs by a factor of 27#, also known as the progress rate. This
formulation only requires the output and cost history to parameterize the learning function. However, the
non-convexity of the problem solution has been an algorithmic hurdle to incorporating this learning
function in many optimization frameworks (Griibler and Messner, 1998). Manne and Barreto (2004) explore
some of these issues and suggest potential solutions.

A common result of including ETC through LBD is that the carbon tax needed to attain a specific CO,
concentration target tends to be lower than in models without LBD or with LBD turned off. This result is
intuitive—with LBD modeled as described above, no R&D expenditure is needed and any additional capacity
of carbon-free energy technologies will lower the costs of that technology in the future, leading to more
emissions reductions per dollar of further investment.

Another commonly observed result of incorporating LBD in climate policy models is that the optimal
abatement path to reach a given concentration target involves increased near-term abatement and
less abatement later (Griibler and Messner, 1998). This result occurs because increased near-term
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abatement encourages earlier LBD in low-carbon technologies, which lowers the long-term costs of
abatement.'?

Other studies suggest that there are actually two factors. On one hand, there is the added value to near-
term technology investment due to LBD, as just mentioned. On the other hand, LBD also leads to lower costs
of future abatement, which implies that abatement should be delayed. The net result of the two opposing
effects may be theoretically ambiguous, but numerical simulations by Manne and Richels (2004) suggest
that the slope of the optimal abatement curve over time actually may be steeper with LBD included,
contrary to previous findings, such as those of Griibler and Messner (1998) described above. Goulder and
Mathai (2000) also find an ambiguous result, with only a weak effect of LBD on the optimal abatement path.

To model LBD, Goulder and Mathai (2000) adjust their formulation of knowledge accumulation given
above in Eq. (15), by replacing the R&D investment (R) with the level of abatement (a):

Ht :OCHt+ ‘P(at,Ht), (19)

where again H is the accumulation of knowledge, « is a parameter, and W is a function of abatement and
the knowledge stock, with the same characteristics as ¥ in Eq. (11). With this specification, current
abatement acts as a learning investment in knowledge, analogous to R&D investment. The result is similar
to many other LBD studies in that both the optimal carbon tax is lower at all points in time and that there
may be considerably more total abatement for any given carbon tax. Analogously, for any given path of
abatement, the necessary carbon tax is lower. However, as mentioned above, the effect of LBD on the slope
of the optimal path of abatement is ambiguous.

A hybrid approach that includes both LBD- and R&D-based TC has been used in a few studies. For
example, Fischer and Newell (2008) model R&D and LBD as inputs into a knowledge stock that lowers the
cost of renewables in the electricity sector. The knowledge stock is modeled as a constant elasticity function
of cumulative R&D investment in knowledge, H;, and cumulative output, Y;, as follows:

Y k] H kz
Kt(Yt,Ht):<Ylt> (HD , (20)

where k; and k, are parameters and where cumulative output and R&D are measured relative to levels in a
base year. This functional form implicitly assumes a complementarity between R&D and learning, which is
supported by the limited empirical evidence available (Lieberman, 1984). The accumulation of H is
governed by the amount of R&D investment, and there is no R&D depreciation; Y accumulates with
production experience. Fischer and Newell take considerable care in basing technological parameter values
in their model on econometric studies of technological change and other evidence. A somewhat similar
formulation also is used in Bahn and Kypreos (2003), who add a “two-factor” learning curve to the MERGE
model (see Manne and Richels, 2004).

Many other climate change policy-modeling studies have included some form of learning-induced TC,
usually with a variant of (18), including: Griibler and Messner (1998), Seebregts et al. (1999), Gritsevskyi
and Nakicenovic (2000), van der Zwann et al. (2002), Anderson and Bird (1992), Papathanasiou and
Anderson (2001), Castelnuovo and Galeotti (2003), Gerlagh and Lise (2003), Gerlagh and van der Zwann
(2003), Jacoby et al. (2003), Messner (1997), and Mulder et al. (2003). The NEMS industrial and electricity
modules also include LBD (EIA, 2003).

6. Conclusion

Given the considerable variety of approaches used to include ETC in climate policy models, it is clear
that there is no agreement in the literature regarding a single best approach. All of the approaches
discussed in this paper have their limitations, and all are approximations that miss some important
phenomena underlying the complex nature of TC with important effects on the results of climate policy
models. Perhaps more importantly, all struggle with an inherent lack of empirical data to calibrate model
parameters convincingly. Below are some key insights from this review for consideration by both modelers

15 Note this runs counter to a common argument that a gradual increase in near-term abatement is optimal in order to avoid
premature obsolescence of the existing capital stock and allow more time for low-cost substitutes to be developed.
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and users of model results. Our focus has been on R&D- and learning-based approaches (versus price-
induced), as most recent developments in endogenizing TC fall into these categories.

Three main points are worth emphasizing with regard to R&D-based approaches: (1) they are most
easily used in more aggregate models; (2) they engender a tension between spillovers and crowding out;
and (3) the empirical evidence underlying many of the relationships in R&D-based approaches remains
somewhat weak. Each of these points will be addressed in turn.

First, R&D-based approaches lend themselves more easily to highly aggregated, forward-looking models
with an explicit production function. In this approach, R&D is treated as an investment in a knowledge
stock, which is an input into production similar to physical capital. Among aggregate models, those that
consider the profit-maximization condition of firms tend to have an easier time incorporating R&D because
they more easily incorporate the divergence between social returns and private returns.'®

Regardless of the model structure, the treatment of both crowding out and spillover assumptions are
highly important. Several studies have spillovers that scale the output of the production function and find
that the optimal carbon policy is different when spillovers are included. Spillovers have important con-
sequences for measuring welfare effects because they represent a source of potential welfare im-
provements (i.e., a market imperfection).

A considerable difficulty in endogenizing TC based on R&D lies in determining the values of the key
parameters. This also is more broadly true of many of the relationships theorized in the model structures
described in this paper, which have not been fully empirically validated (if at all). Choosing a functional
specification that fits best within any given model, but at the same time is empirically valid, is not an easy
task. Nor is it an easy task to consider both public R&D and private R&D. Few, if any, models attempt to
address both explicitly due to the difficulties in modeling and measuring each—yet there are likely to be
interactions between the two that are important to climate policy.

Distinct from the explicit R&D pathway, many LBD-based models have sought to include an association
between falling unit production costs and cumulative output or experience with a technology. Three main
points are worth emphasizing with regard to LBD-based approaches: (1) they are most readily used in
technology-rich models; (2) they capture an apparent empirical regularity, but there are questions about
causality and extrapolation to new technologies; and (3) it is difficult to account for the direct and indirect
costs of learning.

In models replete with technological specificity, adding in learning appears to be a natural way to
include ETC. At the technology level, empirical evidence supports the idea of a learning effect. Moreover,
including this effect appears to have important implications for climate policy, such as lower costs of
achieving a given carbon-mitigation target. In some cases, adding learning also changes the slope of the
optimal abatement path for a given concentration target, implying more near-term reductions, although
recent work has indicated that the effect of learning on the slope of the abatement is ambiguous.

However, LBD-based TC also has substantial problems. There is always the question of the validity of
extrapolating historical evidence of learning in past technologies to new technologies. In addition, learning
is a “black box,” leading to questions of the causality of the reduced costs. For example, is the process of
learning influenced by additional R&D investment, and, if so, is that R&D investment counted as a cost of
the policy? Similarly, does learning in one technology come at the cost of learning in other technologies,
and, if so, is this opportunity cost captured in the model?

Despite these difficulties, with only a few exceptions most studies find that the ramifications and
insights elucidated by incorporating ETC are important quantitatively. The methodology used to in-
corporate ETC ought to depend on the goal of the study: positive or normative. For positive analysis, models
can be formulated in a variety of ways to generate predictions of prices and quantities that are as accurate as
possible. In normative studies, it is much more important to have as transparent an accounting of op-
portunity costs as possible, and R&D-based TC has some advantages in this regard.

Modelers should consider the strengths and limitations of each approach to endogenizing technological
change and experiment with the approaches that best correspond to the purpose and structure of the
model, keeping in mind the possible biases inherent in choosing one approach over another. Users of model
results should be aware of the substantial implications that these subtle assumptions can have on model

16 See Fischer and Newell (2008), who explicitly address the divergence in first-order conditions between social and firm-level
optimization regarding knowledge investments.
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results. Perhaps most importantly, users looking to draw normative conclusions about the costs and
benefits of alternate policies need to be particularly aware of the degree to which models have been
ground-truthed against historic facts and trends and ensure that opportunity costs have been accounted
for properly. While exceptionally promising, there is a sense that our ability to conceptually model
technological change has outstripped our ability to validate the models empirically, making this an area
where policymakers and other normative users need to be particularly careful.
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