Craig S. Henriquez, Professor  

Craig S. Henriquez

Dr. Henriquez is also a Professor of Computer Science and Co-Director of the Center for Neuroengineering. Henriquez's research interests include large scale computing, heart modeling, and brain modeling.

A breakdown of the normal electrical activation sequence of the heart can sometimes lead to a state of ventricular fibrillation in which the heart ceases to function as an effective pump. Abnormal rhythms or arrhythmias often result after an episode of ischemia (a localized reduction of blood flow to the heart itself) which affects both the ionic processes necessary to elicit an impulse and the passive electrical properties of the tissue. Identifying the complex mechanisms of arrhythmogenesis will require experimentation as well as mathematical and computer models.

Current projects include the application of the bidomain model to diseased tissue to investigate how changes in tissue structure (both natural and diseased induced) and changes in ionic current flow influences the nature of conduction and the onset of arrhythmia.

Dr. Henriquez's group is also interested in developing realistic models that will enable investigators to better interpret electrophysiological measurements made in the clinic. For example, activation maps at the surface of the heart are typically constructed based on the detection of specific features of the surface extracellular recordings. However, for complex activation, such as might arise during an arrhythmia, the features are difficult to distinguish.

The use of models that simulate both activation and the resulting extracellular potential and the application of signal processing techniques can lead to a tool for constructing more meaningful maps from experimental recordings during abnormal conduction. This works involves direct interaction with experimental research performed in the Experimental Electrophysiology Laboratory under the direction of Dr. Patrick Wolf and the Cardiac Electrophysiology & Tissue Engineering lab under the direction of Dr. Nenad Bursac.

Contact Info:
Office Location:  136 Hudson Eng Ctr
Office Phone:  +1 919 660 5168, +1 919 660 5171
Email Address:   send me a message
Web Page:


PhD, Duke University, 1988
BSEE, Duke University, 1981
Research Interests:

Henriquez's research interests include large scale computing, heart modeling, and brain modeling.


Heart, Electrophysiology
Computational Biology
Neural Prosthesis
Teaching (Fall 2014):

    Hudson 115A, WF 03:05 PM-04:20 PM
Teaching (Spring 2015):

  • BME 90L.001, INTRODUCTION TO BME Synopsis
    Teer 203, Tu 04:40 PM-06:10 PM
    Teer 203, Tu 06:15 PM-06:40 PM
Recent Publications   (More Publications)

  1. V. Jacquemet and C. S. Henriquez, Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis, Heart Rhythm, vol. 6 no. 6 (June, 2009), pp. 803 -- 810  [abs].
  2. T. A. Kayagil and O. Bai and C. S. Henriquez and P. Lin and S. J. Furlani and S. Vorbach and M. Hallett, A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training, Journal Of Neuroengineering And Rehabilitation, vol. 6 (May, 2009)  [abs].
  3. V. Jacquemet and C. S. Henriquez, Modulation of Conduction Velocity by Nonmyocytes in the Low Coupling Regime, Ieee Transactions On Biomedical Engineering, vol. 56 no. 3 (March, 2009), pp. 893 -- 896  [abs].
  4. W. J. Ying and D. J. Rose and C. S. Henriquez, Efficient Fully Implicit Time Integration Methods for Modeling Cardiac Dynamics, Ieee Transactions On Biomedical Engineering, vol. 55 no. 12 (December, 2008), pp. 2701 -- 2711  [abs].
  5. S. F. Roberts and J. G. Stinstra and C. S. Henriquez, Effect of nonuniform interstitial space properties on impulse propagation: A discrete multidomain model, Biophysical Journal, vol. 95 no. 8 (October, 2008), pp. 3724 -- 3737  [abs].