Center for Biomolecular and Tissue Engineering Center for Biomolecular and Tissue Engineering
Pratt School of Engineering
Duke University

 HOME > pratt > CBTE    Search Help Login pdf version printable version 

Publications [#134103] of Mark W. Dewhirst

Papers Published

  1. JL Lanzen, RD Braun, AL Ong, MW Dewhirst, Variability in blood flow and pO2 in tumors in response to carbogen breathing., International journal of radiation oncology, biology, physics, UNITED STATES, vol. 42 no. 4 (November, 1998), pp. 855-9, ISSN 0360-3016
    (last updated on 2004/03/30)

    Abstract:
    PURPOSE: There is speculation that the CO2 in carbogen (95% O2, 5% CO2) can block the vasoconstrictive effects of oxygen. However, it has recently been shown that blood flow in human tumors is variable while patients breathe carbogen. Furthermore, we have shown a consistent decrease in tumor blood flow (TBF) with carbogen breathing in the rat window chamber model. Also, we have previously shown that there is no significant difference in tumor growth time after radiation with air vs. carbogen breathing. This study was designed to investigate the effects of carbogen breathing on blood flow and oxygen levels in a solid tumor. METHODS: Measurements were made in Fischer-344 rats with 8-10 mm diameter R3230Ac tumors transplanted either within the quadriceps muscle (n = 16) or subcutis (n = 14). Nontumor-bearing quadriceps muscle was studied in six other rats. After a 20-minute air-breathing baseline, rats breathed carbogen for an additional 40 minutes. Partial pressure of oxygen (pO2) was continuously monitored at one position for 60 minutes using 9-12 microm diameter oxygen microelectrodes. Blood flow was simultaneously monitored in all animals using laser Doppler flowmetry (1-2 probes/tumor). RESULTS: Blood flow changes during carbogen breathing were variable in all tissues and intratumoral heterogeneity was observed. Despite variability in blood flow, pO2 consistently increased in normal muscle but varied in both tumor sites. During carbogen breathing, the percent pO2 measurements greater than the baseline average were 99.5% +/- 0.4% (mean +/- SEM), 42.7% +/- 13.8%, and 79.8% +/- 11.0% in normal muscle, subcutaneous tumor, and muscle tumor, respectively. To show the magnitude of change, average pO2 values during air and carbogen breathing were calculated for each site. Normal muscle increased from 14.9 +/- 2.3 to 39.0 +/- 6.4 mm Hg (paired t-test; p = 0.009). Muscle tumors showed a rise from 14.6 +/- 3.2 to 34.5 +/- 8.2 mm Hg (p = 0.019). However, pO2 in subcutaneous tumors remained unchanged, with a pO2 of 7.3 +/- 2.0 mm Hg on air and 7.3 +/- 4.1 mm Hg (p = 0.995) during carbogen breathing. CONCLUSIONS: Carbogen had no consistent effect on blood flow and was ineffective at increasing tumor pO2. These results may partially explain why carbogen breathing failed to improve the efficacy of radiation in this tumor model when transplanted subcutaneously.

    Keywords:
    Administration, Inhalation • Animals • Carbon Dioxide • Female • Muscle, Skeletal • Neoplasms • Oxygen • Partial Pressure • Radiation-Sensitizing Agents • Rats • Rats, Inbred F344 • Regional Blood Flow • administration & dosage • blood supply • blood supply* • drug effects • pharmacology*


Duke University * Pratt * CBTE * Reload * Login